Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair
Abstract
:1. Introduction
2. Test Methodology and Measurement Technique
3. Results and Discussion
4. Conclusions
- The test results substantiated the conjecture that the surface layer condition produced by slide diamond burnishing has a beneficial influence to the durability of the friction couple formed by the 317Ti austenitic steel stem and graphite cord, which works with a reciprocating motion. With properly selected burnishing parameters, the durability of such valves can be up to four times longer than in the case of standard valves (with a drawn stem), which is a premise for recommending sliding diamond burnishing as a finishing treatment for valve stems.
- Compared to standard machining (drawing), diamond burnishing of valve stems resulted in surfaces with increased load capacity, with elevations characterized by about three times larger radii of rounding of the tops, and (also about three times) gentler inclination of the slopes of the tops. These changes, as well as higher values of kurtosis and significant negative values of surface skewness after burnishing, resulted in better adaptation of the stems to work in conditions of reciprocating friction.
- After sliding burnishing, approximately 25% higher surface microhardness and much higher (by approximately 60%) compressive stress than in standard stems were noted. The synergy of these effects and changes in the surface texture contributed to the increased durability of the valves.
- The research results obtained in this work are a premise for further research (e.g., optimization) on the legitimacy of using sliding diamond burnishing as finishing machining of 317Ti austenitic steel parts exposed to sliding friction.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
MTBF | Mean time between failures |
PCD | Polycrystalline diamond |
PFTE | Polytetrafluoroethylene |
Sa | Arithmetic mean height, μm |
Sal | Auto-correlation length, mm |
Sbi | Surface bearing index |
Sci | Core fluid retention index |
Sdq | Root mean square gradient |
Sdr | Developed interfacial areal ratio, % |
Sds | Density of summits of the surface, pks/mm2 |
Sfd | Fractal dimension |
Sk | Core roughness depth, μm |
Sku | Kurtosis |
Sp | Maximum peak height, μm |
Spc | Arithmetic mean peak curvature, 1/mm |
Spd | Peak density, 1/mm2 |
Spk | Reduced summit height, μm |
Sq | Root mean square height, μm |
Sds | Density of summits of the surface, pks/mm2 |
Smmr | Average volume of elevated material in a unit area, mm3/mm2 |
Smvr | Average volume of cavities on a unit area, mm3/mm2 |
Sr1 | Upper bearing surface, % |
Sr2 | Lower bearing surface, % |
Ssc | Arithmetic mean summit curvature of the surface, 1/μm |
Ssk | Skewness |
St | Total height of roughness profile, μm |
STp | Surface material ratio, % |
Std | Texture direction, ° |
Str | Texture parameter |
Sv | Maximum valley depth, μm |
Svi | Valley fluid retention index |
Svk | Reduced valley depth, μm |
Sz | The maximum height of surface, μm |
Vvv | Dale void volume, mm3/mm2 |
Vvc | Core void volume, mm3/mm2 |
References
- Kubiak, K.J.; Mathia, T.G.; Fouvry, S. Interface roughness effect on friction map under fretting contact conditions. Tribol. Int. 2010, 43, 1500–1507. [Google Scholar] [CrossRef]
- Lu, W.; Zhang, G.; Liu, X.; Zhou, L.; Chen, L.; Jiang, X. Prediction of surface topography at the end of sliding running-in wear based on areal surface parameters. Tribol. Trans. 2014, 57, 553–560. [Google Scholar] [CrossRef]
- Korzynski, M.; Dudek, K.; Kruczek, B.; Kocurek, P. Equilibrium surface texture of valve stems and burnishing method to obtain it. Tribol. Int. 2018, 124, 195–199. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Chang, S. Predicting running-in wear volume with a SVMR-based model under a small amount of training samples. Tribol. Int. 2018, 128, 349–355. [Google Scholar] [CrossRef]
- Steep, F.; Wustenhagen, G. Counter surfaces of hydraulic seals for heavy-duty applications. Seal. Technol. 2006, 12, 8–10. [Google Scholar] [CrossRef]
- Dzyura, V.; Maruschak, P.; Slavov, S.; Gurey, V.; Prentkovskis, O. Evaluating Service Characteristics of Working Surfaces of Car Parts by Microgeometric Quality Parameters. Machines 2021, 9, 366. [Google Scholar] [CrossRef]
- Dzyura, V.; Maruschak, P. Optimizing the Formation of Hydraulic Cylinder Surfaces, Taking into Account Their Microrelief Topography Analyzed during Different Operations. Machines 2021, 9, 116. [Google Scholar] [CrossRef]
- Shuster, M.; Seasons, R.; Burke, D. Laboratory simulation to select oil seal and surface treatment. Wear 1999, 225–229, 954–961. [Google Scholar] [CrossRef]
- Caitano, T.L.; Silva, L.R.R.; Machado, Á.R.; Boing, D.; Laurindo, C.A.H. Influence of finishing post-treatment on drill rake and margin surfaces in the drilling of SAE 4144M steel. CIRP J. Manuf. Sci. Technol. 2022, 37, 81–91. [Google Scholar] [CrossRef]
- Ruzzi, R.S.; Silva, L.R.R.; Silva, R.B.; Silva, W.M.; Junior Bianchi, E.C. Topographical Analysis of Machined Surfaces after Grinding with Different Cooling-lubrication Techniques. Tribol. Int. 2020, 141, 105962. [Google Scholar] [CrossRef]
- Hu, S.; Huang, W.; Liu, X.; Wang, Y. Probe model of wear degree under sliding wear by Rk parameter set. Tribol. Int. 2017, 109, 578–585. [Google Scholar] [CrossRef]
- Kovács, Z.F.; Viharos, Z.J.; Kodácsy, J. Improvements of surface tribological properties by magnetic assisted ball burnishing. Surf. Coat. Technol. 2022, 437, 128317. [Google Scholar] [CrossRef]
- Prajapati, D.K.; Tiwari, M. The correlation between friction coefficient and areal topography parameters for AISI 304 steel sliding against AISI 52100 steel. Friction 2021, 9, 41–60. [Google Scholar] [CrossRef]
- Prajapati, D.K.; Tiwari, M. Experimental investigation on evolution of surface damage and topography parameters during rolling contact fatigue tests. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 355–370. [Google Scholar] [CrossRef]
- Deleanu, L.; Ionescu, T.F.; Cristea, G.C.; Suciu, C.C.; Georgescu, C. 3D texture parameters for wear scars after severe regime. Ind. Lubr. Tribol. 2022, 74, 324–334. [Google Scholar] [CrossRef]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int. 2012, 48, 102–112. [Google Scholar] [CrossRef]
- Sedlaček, M.; Gregorčič, P.; Podgornik, B. Use of the roughness parameters Ssk and Sku to control friction—A method for designing surface texturing. Tribol. Trans. 2017, 60, 260–266. [Google Scholar] [CrossRef]
- Dzierwa, A. Influence of surface preparation on surface topography and tribological behaviours. Arch. Civ. Mech. Eng. 2017, 17, 502–510. [Google Scholar] [CrossRef]
- Dzierwa, A.; Markopoulos, A.P. Influence of Ball-Burnishing Process on Surface Topography Parameters and Tribological Properties of Hardened Steel. Machines 2019, 7, 11. [Google Scholar] [CrossRef]
- Reddy, M.V.K.; Kuriachen, B.; Joshy, J.; Joy, M.L. Influence of areal surface parameters on the tribological behavior of Ti6Al4V under lubricated condition. Tribol. Int. 2023, 179, 108147. [Google Scholar] [CrossRef]
- Shi, R.; Wang, B.; Yan, Z.; Wang, Z.; Dong, L. Effect of Surface Topography Parameters on Friction and Wear of Random Rough Surface. Materials 2019, 12, 2762. [Google Scholar] [CrossRef] [PubMed]
- Duncheva, G.V.; Maximov, J.T.; Anchev, A.P.; Dunchev, V.P.; Argirov, Y.B. Improvement in Wear Resistance Performance of CuAl8Fe3 Single-Phase Aluminum Bronze via Slide Diamond Burnishing. J. Mater. Eng. Perform. 2022, 31, 2466–2478. [Google Scholar] [CrossRef]
- Skoczylas, A.; Zaleski, K.; Matuszak, J.; Cieciela, G.K.; Zaleski, R.; Gorgol, M. Influence of Slide Burnishing Parameters on the Surface Layer Properties of Stainless Steel and Mean Positron Lifetime. Materials 2022, 15, 8131. [Google Scholar] [CrossRef]
- Jeng, Y. Impact of plateaued surfaces on tribological performance. Tribol. Trans. 1996, 39, 354–361. [Google Scholar] [CrossRef]
- Shi, G.; Yu, X.; Meng, H.; Zhao, F.; Wang, J.; Jiao, J.; Jiang, H. Effect of surface modification on friction characteristics of sliding bearings: A review. Tribol. Int. 2023, 177, 107937. [Google Scholar] [CrossRef]
- Huang, Q.; Shi, X.; Xue, Y.; Zhang, K.; Wu, C. Recent Progress on Surface Texturing and Solid Lubricants in Tribology: Designs, Properties, and Mechanisms. Mater. Today Commun. 2023, 35, 105854. [Google Scholar] [CrossRef]
- Wang, Z.-X.; Chen, W.-G.; Zhang, L.-Z.; Hao, X.-X.; Yin, H.-Z.; Guo, W.-X.; Jing, P.-Y.; Zhang, J.-B. Research Progress on the Influence of Geometric Characteristics and Working Conditions on the Friction Characteristics of Surface Texture. Surf. Technol. 2022, 51, 89–100. [Google Scholar] [CrossRef]
- Huang, Y.L.; Zhong, L.; Wang, G.R.; Wei, G.; Peng, S.C. Research Status and Progress of Surface Texture Lubrication and Friction Reduction. Surf. Technol. 2021, 50, 217–232. [Google Scholar] [CrossRef]
- Hikiji, R. A Study on Efficient Machining Method for Small Diameter Rods Made of Nickel Base Super Alloy. In Proceedings of the 7th International Conference on Frontiers of Industrial Engineering (ICFIE), Singapore, 18–20 September 2020; pp. 88–92. [Google Scholar] [CrossRef]
- Ye, H.; Chen, A.; Liu, S.; Zhang, C.; Gao, Y.; Li, Q.; Lv, J.; Chen, J.; Guo, H. Effect of ultrasonic surface rolling process on the surface properties of QAl10-3-1.5 aluminum bronze alloy. Surf. Coat. Technol. 2022, 433, 128126. [Google Scholar] [CrossRef]
- Korzynski, M. Slide Diamond Burnishing. In Nonconventional Finishing Technologies; Korzynski, M., Ed.; Polish Scientific Publishers PWN: Warsaw, Poland, 2014; pp. 9–33. [Google Scholar]
- Korzynski, M.; Dudek, K.; Palczak, A.; Kruczek, B.; Kocurek, P. Experimental Models and Correlations between Surface Parameters after Slide Diamond Burnishing. Meas. Sci. Rev. 2018, 18, 123–129. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Ichkova, M.D. Slide burnishing—Review and prospects. Int. J. Adv. Manuf. Technol. 2019, 104, 785–801. [Google Scholar] [CrossRef]
- Sachin, B.; Narendranath, S.; Chakradhar, D. Application of Desirability Approach to Optimize the Control Factors in Cryogenic Diamond Burnishing. Arab. J. Sci. Eng. 2020, 45, 1305–1317. [Google Scholar] [CrossRef]
- Korzynski, M. A model of smoothing slide ball-burnishing and an analysis of the parameter interaction. J. Mater. Process. Technol. 2009, 209, 625–633. [Google Scholar] [CrossRef]
- Fitzpatric, M.E.; Fry, A.T.; Holdway, P.; Kandil, F.A.; Shackleton, J.; Suominen, L. Determination of Residual Stresses by X-ray Diffraction, Issue 2. Measurement Good Practice Guide; No. 52; National Physical Laboratory: London, UK, 2005. [Google Scholar]
- Oczos, K.E.; Liubimov, V. Surface Geometric Structure; Rzeszow Technical University Publishing House: Rzeszow, Poland, 2003; pp. 58–68. (In Polish) [Google Scholar]
- Konefal, K.; Korzynski, M.; Byczkowska, Z.; Korzynska, K. Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing. J. Mater. Process. Technol. 2013, 213, 1997–2004. [Google Scholar] [CrossRef]
Fe | Cr | Ni | Mo | Ti | Mn | Cu | Si | V | Co | C |
---|---|---|---|---|---|---|---|---|---|---|
66.86 | 17.13 | 10.58 | 1.903 | 0.054 | 2.016 | 0.492 | 0.459 | 0.096 | 0.077 | 0.021 |
Hardness, HB | Yield Limit, Rp0.2, [MPa] | Tensile Strength, Rm [MPa] | Elongation A5, [%] |
---|---|---|---|
217 | 200 | 600 | 40 |
Contour line map | Surface photograph | |
3D surface view | ||
Amplitude parameters | 3D parameters | Functional parameters |
Sa = 0.12 μm | Sbi = 0.193 | |
Sq = 0.189 μm | Spc = 288 1/mm | Sci = 1.2 |
Sp = 1.23 μm | Sds = 2225 1/mm2 | Svi = 0.121 |
Sv = 7.44 μm | Str = 0.545 | Sk = 0.347 μm |
St = 8.67 μm | Sal = 0.115 mm | Spk = 0.159 μm |
Ssk = −7.17 | Std = 45° | Svk = 0.239 μm |
Sku = 158 | Sfd = 2.12 | Sr1 = 10.2% |
Sz = 4.58 μm | Sr2 = 88.4% | |
Surface and volumetric parameters | Hybrid parameters | |
STp = 53.2% | Sdq = 0.0213 | |
Smmr = 0.00744 mm3/mm2 | Ssc = 0.00444 1/μm | |
Smvr = 0.00123 mm3/mm2 | Sdr = 0.0226% | |
Ordinate distribution & load-bearing curve | Distribution of localized elevations | |
Autocorrelation function | ||
Power spectrum density distribution |
Contour line map | Surface photograph | |
3D surface view | ||
Amplitude parameters | 3D parameters | Functional parameters |
Sa = 0.191 μm | Sbi = 0.158 | |
Sq = 0.255 μm | Spc = 96.6 1/mm | Sci = 1.8 |
Sp = 2.09 μm | Sds = 1799 1/mm2 | Svi = 0.113 |
Sv = 1.03 μm | Str = 0.203 | Sk = 0.506 μm |
St = 3.12 μm | Sal = 0.0666 mm | Spk = 0.396 μm |
Ssk = 0.486 | Std = 44.5° | Svk = 0.255 μm |
Sku = 4.14 | Sfd = 2.53 | Sr1 = 15.4% |
Sz = 2.17 μm | Sr2 = 88.2% | |
Surface and volumetric parameters | Hybrid parameters | |
STp = 46% | Sdq = 0.0566 | |
Smmr = 0.00103 mm3/mm2 | Ssc = 0.0127 1/μm | |
Smvr = 0.00209 mm3/mm2 | Sdr = 0.159% | |
Ordinate distribution & load-bearing curve | Distribution of localized elevations | |
Autocorrelation function | ||
Power spectrum density distribution |
Valve Stem Version | Tested Parameters | |||
---|---|---|---|---|
Ssc [1/µm] | Sdq | Rw [µm] | β [°] | |
Standard | 0.0127 | 0.0566 | 78.74 | 3.24 |
Slide diamond burnished | 0.00444 | 0.0213 | 225.225 | 1.22 |
Valve Stem Version | Stress Level [MPa] | Microhardness [MPa] | ||||
---|---|---|---|---|---|---|
Circumferential | Standard Deviation | Axial | Standard Deviation | Standard Deviation | ||
Standard | −305.9 | 13.8 | −510.9 | 24.4 | 326 | 6 |
Slide diamond burnished | −479.6 | 12.9 | −773.9 | 15.5 | 409 | 19 |
No. | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|
Valve Stem Version | Standard | Slide Diamond Burnished | |||
Burnishing parameters | Tool tip radius [mm] | – | 3 | 4 | 4 |
Feed rate [mm/r] | – | 0.03 | 0.11 | 0.03 | |
Force [N] | – | 100 | 150 | 50 | |
Texture parameters | Sa [μm] | 0.191 | 0.12 | 0.153 | 0.209 |
Sz [μm] | 2.17 | 4.58 | 7.22 | 8.92 | |
Sku | 4.14 | 158 | 83.3 | 77 | |
Ssk | 0.486 | −7.17 | −0.604 | −6.8 | |
Sdq | 0.0566 | 0.0213 | 0.0355 | 0.0484 | |
Sal [mm] | 0.067 | 0.115 | 0.044 | 0.042 | |
Sbi | 0.158 | 0.193 | 0.091 | 0.238 | |
Sq [μm] | 0.255 | 0.189 | 0.262 | 0.435 | |
Sv [μm] | 1.03 | 7.44 | 6.19 | 8.61 | |
Ssc [1/μm] | 0.01271 | 0.00444 | 0.00561 | 0.00557 | |
St [μm] | 3.12 | 8.67 | 9.39 | 10.8 | |
Spk [μm] | 0.396 | 0.159 | 0.164 | 0.237 | |
Svk [μm] | 0.255 | 0.239 | 0.465 | 0.903 | |
Durability test results (until failure by leaking) | Valve working time [h] | 72 | 312 | 148 | 103 |
Friction distance [m] | 5200 | 22,530 | 10,690 | 7340 | |
Number of cycles | 14,000 | 60,670 | 28,780 | 20,030 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korzynski, M.; Dudek, K.; Korzynska, K. Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair. Appl. Sci. 2023, 13, 6392. https://doi.org/10.3390/app13116392
Korzynski M, Dudek K, Korzynska K. Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair. Applied Sciences. 2023; 13(11):6392. https://doi.org/10.3390/app13116392
Chicago/Turabian StyleKorzynski, Mieczyslaw, Kazimiera Dudek, and Katarzyna Korzynska. 2023. "Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair" Applied Sciences 13, no. 11: 6392. https://doi.org/10.3390/app13116392
APA StyleKorzynski, M., Dudek, K., & Korzynska, K. (2023). Effect of Slide Diamond Burnishing on the Surface Layer of Valve Stems and the Durability of the Stem-Graphite Seal Friction Pair. Applied Sciences, 13(11), 6392. https://doi.org/10.3390/app13116392