Time-Series InSAR Deformation Monitoring of High Fill Characteristic Canal of South–North Water Diversion Project in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Research Methodology
3. Data Results and Analysis
3.1. PS-InSAR Deformation Monitoring Results of South–North Water Diversion Project High Fill Canals
3.2. Comparison Analysis of PS-InSAR Results and Second Order Leveling Data
3.3. Key Deformation Area Cross-Sectional Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Zheng, H. South-to-north Water Transfer Schemes for China. Int. J. Water Resour. Dev. 2002, 18, 453–471. [Google Scholar] [CrossRef]
- Moore, S.M. Modernisation, authoritarianism, and the environment: The politics of China’s South–North Water Transfer Project. Environ. Politics 2014, 23, 947–964. [Google Scholar] [CrossRef]
- Office of the South-to-North Water Diversion Project Construction Committee. The South-to-North Water Diversion Project. Engineering 2016, 2, 265–267. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Z.; Jun, H. Research progress and methods of InSAR for deformation monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z. Advances in InSAR Imaging and Data Processing. Remote Sens. 2022, 14, 4307. [Google Scholar] [CrossRef]
- Biggs, J.; Wright, T.J. How satellite InSAR has grown from opportunistic science to routine monitoring over the last decade. Nat. Commun. 2020, 11, 3863. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Perissin, D.; Rocca, F.; Liao, M.-S. Three Gorges Dam stability monitoring with time-series InSAR image analysis. Sci. China Earth Sci. 2010, 54, 720–732. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Song, Z.; Hu, Q. Research on the training mode of water conservancy talents with surveying and mapping background in the new era. J. N. China Univ. Water Resour. Electr. Power (Soc. Sci. Ed.) 2022, 43, 1–10. [Google Scholar] [CrossRef]
- Liu, H.; Xu, Q. Interference processing for zero intermediate frequency multi-baseline InSAR sssisted by DEM. J. Henan Norm. Univ. (Nat. Sci. Ed.) 2018, 46, 42–47. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Guo, S.; Xia, J. Land Subsidence Monitoring Method in Regions of Variable Radar Reflection Characteristics by Integrating PS-InSAR and SBAS-InSAR Techniques. Remote Sens. 2022, 14, 3265. [Google Scholar] [CrossRef]
- Liu, H.; Jin, G.; Zhang, H.; Xu, Q. DEM assisted zero intermediate frequency baseline estimation method of InSAR. J. Huazhong Univ. Sci. Technol. (Nat. Sci. Ed.) 2017, 45, 79–84. [Google Scholar] [CrossRef]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Fu, Y.; Wu, T. Saline-Soil Deformation Extraction Based on an Improved Time-Series InSAR Approach. ISPRS Int. J. Geo-Inf. 2021, 10, 112. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Zhu, X.X.; Bamler, R. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR. IEEE Trans. Geosci. Remote Sens. 2012, 50, 247–258. [Google Scholar] [CrossRef]
- Liu, H.; Yue, J.; Huang, Q.; Li, G.; Liu, M. A Novel Branch and Bound Pure Integer Programming Phase Unwrapping Algorithm for Dual-Baseline InSAR. Front. Environ. Sci. 2022, 10, 890343. [Google Scholar] [CrossRef]
- Ma, P.; Lin, H. Robust Detection of Single and Double Persistent Scatterers in Urban Built Environments. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2124–2139. [Google Scholar] [CrossRef]
- Del Soldato, M.; Solari, L.; Raspini, F.; Bianchini, S.; Ciampalini, A.; Montalti, R.; Ferretti, A.; Pellegrineschi, V.; Casagli, N. Monitoring Ground Instabilities Using SAR Satellite Data: A Practical Approach. ISPRS Int. J. Geo-Inf. 2019, 8, 307. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Xu, Q.; Lou, L. Inclination angle error compensation algorithm of MIMO downward looking array SAR. Acta Geod. Cartogr. Sin. 2018, 47, 973–985. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Jolivet, R.; Dalaison, M.; Johnson, P.A.; Hulbert, C. Autonomous extraction of millimeter-scale deformation in InSAR time series using deep learning. Nat. Commun. 2021, 12, 6480. [Google Scholar] [CrossRef]
- Liu, H.; Li, G.; Jin, G.; Xu, Q. Array vibrating error compensation algorithm of MIMO downward-looking array SAR. J. Geomat. Sci. Technol. 2018, 35, 175–181. [Google Scholar]
- Lyu, M.; Ke, Y.; Guo, L.; Li, X.; Zhu, L.; Gong, H.; Constantinos, C. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry. GIScience Remote Sens. 2019, 57, 140–156. [Google Scholar] [CrossRef]
- Ghorbani, Z.; Khosravi, A.; Maghsoudi, Y.; Mojtahedi, F.F.; Javadnia, E.; Nazari, A. Use of InSAR data for measuring land subsidence induced by groundwater withdrawal and climate change in Ardabil Plain, Iran. Sci. Rep. 2022, 12, 13998. [Google Scholar] [CrossRef] [PubMed]
- Bai, Z.; Wang, Y.; Balz, T. Beijing Land Subsidence Revealed Using PS-InSAR with Long Time Series TerraSAR-X SAR Data. Remote Sens. 2022, 14, 2529. [Google Scholar] [CrossRef]
- Dai, K.; Deng, J.; Xu, Q.; Li, Z.; Shi, X.; Hancock, C.; Wen, N.; Zhang, L.; Zhuo, G. Interpretation and sensitivity analysis of the InSAR line of sight displacements in landslide measurements. GIScience Remote Sens. 2022, 59, 1226–1242. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, Y.; Xu, J.; Nishyirimbere, A.; Li, Z. Geo-Hazard Detection and Monitoring Using SAR and Optical Images in a Snow-Covered Area: The Menyuan (China) Test Site. ISPRS Int. J. Geo-Inf. 2017, 6, 293. [Google Scholar] [CrossRef]
- Zheng, X.; He, G.; Wang, S.; Wang, Y.; Wang, G.; Yang, Z.; Yu, J.; Wang, N. Comparison of Machine Learning Methods for Potential Active Landslide Hazards Identification with Multi-Source Data. ISPRS Int. J. Geo-Inf. 2021, 10, 253. [Google Scholar] [CrossRef]
- Su, X.; Zhang, Y.; Meng, X.; Rehman, M.U.; Khalid, Z.; Yue, D. Updating Inventory, Deformation, and Development Characteristics of Landslides in Hunza Valley, NW Karakoram, Pakistan by SBAS-InSAR. Remote Sens. 2022, 14, 4907. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; English, J.; Chamberland, J.; Alasset, P.-J. Monitoring surface changes in discontinuous permafrost terrain using small baseline SAR interferometry, object-based classification, and geological features: A case study from Mayo, Yukon Territory, Canada. GIScience Remote Sens. 2018, 56, 485–510. [Google Scholar] [CrossRef]
- Beck, I.; Ludwig, R.; Bernier, M.; Strozzi, T.; Boike, J. Vertical movements of frost mounds in subarctic permafrost regions analyzed using geodetic survey and satellite interferometry. Earth Surf. Dyn. 2015, 3, 409–421. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, L.; Wang, L.; Xing, Z.; Zou, D.; Hu, G.; Xie, C.; Pang, Q.; Liu, G.; Du, E.; et al. Characteristics of Freeze–Thaw Cycles in an Endorheic Basin on the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology. Remote Sens. 2022, 14, 3168. [Google Scholar] [CrossRef]
- Dong, J.; Lai, S.; Wang, N.; Wang, Y.; Zhang, L.; Liao, M. Multi-scale deformation monitoring with Sentinel-1 InSAR analyses along the Middle Route of the South-North Water Diversion Project in China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102324. [Google Scholar] [CrossRef]
- Wang, N.; Dong, J.; Wang, Z.; Lei, J.; Zhang, L.; Liao, M. Monitoring Large-Scale Hydraulic Engineering Using Sentinel-1 InSAR: A Case Study of China’s South-to-North Water Diversion Middle Route Project. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 739–750. [Google Scholar] [CrossRef]
- Ma, C.; Qu, C.; Meng, X. Embankment stability of the north henan section of middle route project(MRP) of south-to-north water diversion based on InSAR tine series analysis. Seismol. Geol. 2014, 36, 749–762. [Google Scholar] [CrossRef]
- Zhang, Y.; Tian, F.; Li, Y.; Liu, H. Application of time series InSAR to deformation monitoring in central line project of South-to-North Water transfer. J. Yangtze River Sci. Res. Inst. 2021, 38, 72–77. [Google Scholar] [CrossRef]
- He, Z.; Yu, H.; Xie, S. Deformation monitoring of Xiaolangdi dam based on SBAS-InSAR technology. Sci. Surv. Mapp. 2022, 47, 66–72+82. [Google Scholar] [CrossRef]
Date | Vertical Baseline/m | Time Baseline/d |
---|---|---|
2016-10-02 | 44.6939 | −120 |
2016-10-14 | 39.6777 | −108 |
2016-10-26 | −14.6982 | −96 |
2016-11-07 | −45.9389 | −84 |
2016-11-19 | −47.9464 | −72 |
2016-12-01 | 59.9997 | −60 |
2016-12-13 | 89.2754 | −48 |
2016-12-25 | 41.2237 | −36 |
2017-01-06 | 24.5749 | −24 |
2017-01-18 | 25.7572 | −12 |
2017-01-30 | 0 | 0 |
2017-02-23 | 41.6563 | 24 |
2017-03-07 | 48.3596 | 36 |
2017-03-19 | −17.8744 | 48 |
2017-03-31 | 6.71604 | 60 |
2017-04-12 | −29.0038 | 72 |
2017-04-24 | 14.7846 | 84 |
2017-05-06 | −103.157 | 96 |
2017-05-18 | −71.4633 | 108 |
2017-05-30 | −5.27029 | 120 |
2017-06-11 | 12.532 | 132 |
2017-06-23 | 27.2988 | 144 |
Point | RMSE/mm | Mean/mm | Maximum Difference/mm |
---|---|---|---|
P1 | 3.02 | 2.37 | 6.59 |
P2 | 0.73 | 0.61 | 1.53 |
P3 | 1.36 | 1.15 | 2.61 |
P4 | 1.57 | 1.17 | 4.41 |
P5 | 1.65 | 1.18 | 4.68 |
P6 | 1.31 | 0.94 | 3.55 |
P7 | 1.73 | 1.32 | 4.11 |
P8 | 1.3 | 1.01 | 3.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhao, W.; Qin, Z.; Wang, T.; Li, G.; Zhu, M. Time-Series InSAR Deformation Monitoring of High Fill Characteristic Canal of South–North Water Diversion Project in China. Appl. Sci. 2023, 13, 6415. https://doi.org/10.3390/app13116415
Liu H, Zhao W, Qin Z, Wang T, Li G, Zhu M. Time-Series InSAR Deformation Monitoring of High Fill Characteristic Canal of South–North Water Diversion Project in China. Applied Sciences. 2023; 13(11):6415. https://doi.org/10.3390/app13116415
Chicago/Turabian StyleLiu, Hui, Wenfei Zhao, Zhen Qin, Tiesheng Wang, Geshuang Li, and Mengyuan Zhu. 2023. "Time-Series InSAR Deformation Monitoring of High Fill Characteristic Canal of South–North Water Diversion Project in China" Applied Sciences 13, no. 11: 6415. https://doi.org/10.3390/app13116415
APA StyleLiu, H., Zhao, W., Qin, Z., Wang, T., Li, G., & Zhu, M. (2023). Time-Series InSAR Deformation Monitoring of High Fill Characteristic Canal of South–North Water Diversion Project in China. Applied Sciences, 13(11), 6415. https://doi.org/10.3390/app13116415