Optimal Energy Integration and Off-Design Analysis of an Amine-Based Natural Gas Sweetening Unit
Abstract
:1. Introduction
2. Energy Assessment of the Background Process
3. Heat Integration Model
3.1. First Loop: Direct Heat Integration
- (a)
- An overall minimum temperature approach of 10 °C;
- (b)
- A minimum temperature of 160 °C assumed as a cooling limit of the exhausts in order to prevent sulfur condensation;
- (c)
- A maximal temperature for the heating oil of 177 °C to prevent amine degradation at the skin of reboiler tubes.
3.2. Second Loop: ORC Integration
3.3. Optimization Methodology of the Second Loop
4. Results and Discussion
4.1. Mapping Waste Heat
4.2. Direct Heat Integration
4.3. ORC Integration
4.4. Selection of ORC Fluid
5. Off-Design Performance Analysis
- The heat transfer area (UA) of each heat exchanger obtained using design conditions was maintained in the off-design analysis.
- The pump was assumed to deliver the required flow rate and outlet pressure at the design efficiency—an acceptable assumption given that the ORC fluid flow rate was found to range within ±10% of the design value.
- The turbine was also assumed capable of delivering the expansion ratios despite the fluctuating conditions. However, due to the large deviation in expander energy output of ±30%, the efficiency of the turbine was corrected using Equation (8) [26], where represents the efficiency and the “on” and “off” indices indicate, respectively, the design and off-design values of a parameter.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEA. World Energy Outlook 2021; IEA: Paris, France, 2021.
- British Petroleum. Statistical Review of World Energy 2021; British Petroleum: London, UK, 2021. [Google Scholar]
- Hung, T.C.; Shai, T.; Wang, S.K. A review of organic Rankine cycles (ORCs). Energy 1997, 22, 661–667. [Google Scholar] [CrossRef]
- Su, Z.; Zhang, M.; Xu, P.; Zhao, Z.; Wang, Z.; Huang, H.; Ouyang, T. Opportunities and strategies for multigrade waste heat utilization in various industries: A recent review. Energy Conv. Manag. 2021, 229, 113769. [Google Scholar] [CrossRef]
- Siyao, L.; Jie, H.; Dexiang, L. Optimal integration of methanol-to-gasoline process with organic Rankine cycle. Chem. Eng. Res. Des. 2020, 154, 182–191. [Google Scholar]
- Tartière, T.; Astolfi, M. A World Overview of the ORC Market. In Proceedings of the IV International Seminar on ORC Power Systems, Milano, Italy, 13–15 September 2017; pp. 13–15. [Google Scholar]
- Shaikh, A.Z.; Alnouss, A.; Al-Ansari, T. A heat integration case study for the dehydration and condensate stabilization units in LNG plants for economic and energy savings. Comput. Chem. Eng. 2022, 168, 108062. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Liang, Y.; Yuan, M.; Varbanov, P.S.; Klemes, J.J. A method for simultaneous retrofit of heat exchanger networks and tower operations for an existing natural gas purification process. Adv. Electr. Eng. Electron. Energy 2021, 1, 100019. [Google Scholar] [CrossRef]
- Yu, H.; Feng, X.; Wang, Y.; Biegler, L.; Eason, J. A systematic method to customize an efficient organic Rankine cycle to recover waste heat in refineries. Appl. Energy 2016, 179, 302–315. [Google Scholar] [CrossRef]
- Veloso, T.G.C.; Sotomonte, C.A.R.; Coronado, C.J.R.; Nascimento, M.A.R. Multi-objective optimization and exergetic analysis of a low-grade waste heat recovery ORC application on a Brazilian FPSO. Energy Conv. Manag. 2018, 174, 537–551. [Google Scholar] [CrossRef]
- Ting, H.; Wensheng, L. Energy saving research of natural gas liquefaction plant based on waste heat utilization of gas turbine exhaust. Energy Conv. Manag. 2020, 225, 113468. [Google Scholar]
- Zhao, H.L.; Dong, H.; Tang, J.; Cai, J. Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry. Energy 2016, 105, 45–56. [Google Scholar] [CrossRef]
- Bianchi, M.; Branchini, L.; De Pascal, A.; Melino, F.; Peretto, A.; Archetti, D.; Campana, F.; Ferrari, T.; Rossetti, N. Feasibility of ORC application in natural gas compressor stations. Energy 2019, 173, 1–15. [Google Scholar] [CrossRef]
- Leonard, G.; Crosset, C.; Toye, D.; Heyen, G. Influence of process operating conditions on solvent thermal and oxidative degradation in post-combustion CO2 capture. Comput. Chem. Eng. 2015, 83, 121–130. [Google Scholar] [CrossRef]
- Nuchitprasittichai, A.; Cremaschi, S. Optimization of CO2 capture process with aqueous amines using response surface methodology. Ind. Eng. Chem. Res. 2013, 52, 10236–10243. [Google Scholar] [CrossRef]
- Peters, L.; Hussain, A.; Follman, M.; Melin, T.; Hagg, M.B. CO2 removal from natural gas by employing amine absorption and membrane technology—A technical and economical analysis. Chem. Eng. J. 2011, 172, 952–960. [Google Scholar] [CrossRef]
- Peng, D.Y.; Robinson, D.B. A New Two-Constant 18 Equation of State. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Siemens Gas Turbine Portfolio 2018, Article-No. PGDG-B10006-04-4A00. Available online: www.siemens.com (accessed on 21 September 2020).
- Li, Y.; Mather, A.E. Correlation of the Solubility of CO2 in a Mixed Solution. Ind. Eng. Chem. Res. 1994, 33, 2006–2015. [Google Scholar] [CrossRef]
- Kamaruddin, A. Aspen HYSYS: An Introduction to Chemical Engineering Simulation; Lambert Academic Publish: London, UK, 2013. [Google Scholar]
- Javaloyes-Anton, J.; Ruiz-Femenia, R.; Caballero, J.A. Rigorous design of complex distillation columns using process simulators and the particle swarm optimization algorithm. Ind. Eng. Chem. Res. 2013, 52, 15621–15634. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-international conference on neural networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1945. [Google Scholar]
- Grag, P.; Orosz, M.S. Economic optimization of Organic Rankine cycle with pure fluids and mixtures for waste heat and solar applications using particle swarm optimization method. Energy Conv. Manag. 2018, 165, 649–668. [Google Scholar] [CrossRef]
- Rui, Z.; Hongguang, Z.; Songsong, S.; Fubin, Y.; Xiaochen, H.; Yuxin, Y. Global optimization of the diesel engine–Organic Rankine cycle (ORC) combined system based on particle swarm optimizer (PSO). Energy Conv. Manag. 2018, 174, 248–259. [Google Scholar]
- Kyungtae, P.; Soung-Ryong, O.; Wangyun, W. Techno-economic optimization of the integration of an organic Rankine cycle into a molten carbonate fuel cell power plant. Korean J. Chem. Eng. 2019, 36, 345–355. [Google Scholar]
- In, S.K.; Tong, S.K.; Jong, J.L. Off-design performance analysis of organic Rankine cycle using real operation data from a heat source plant. Energy Conv. Manag. 2017, 133, 284–291. [Google Scholar]
Compression | Sweetening | Dehydration | Separation | ||
---|---|---|---|---|---|
Technology | Turbine-driven | Amine based | Adsorption | Expander | |
Temp. requirements | °C | NA | 127 | 260 | 220 |
Heating requirements | (-) | NA | 1.00 | 0.43 | 0.91 |
Waste heat quant. | (-) | 3.28 | 1.00 | 0.72 | 0.94 |
Waste heat quality | °C | 131–500 | 70–89 | 260–265 | 40–60 |
Unit | Type | Initial T °C | Target T °C | Energy MW | |
---|---|---|---|---|---|
Exhaust gas from turbine | Comp. | Hot | 502–550 | to atm. | 6.8–22.2 |
Compressed natural gas | Comp. | Hot | 131–166 | 55 | 2.8–19.0 |
Lean amine cooler | Sweet. | Hot | 57–92 | 55 | 0.1–26.7 |
Amine reg. condenser | Sweet. | Hot | 89–95 | 55 | 1.8–11.3 |
Amine reg. reboiler | Sweet. | Cold | 128 | 128 | 9.9–43.0 |
Property Package | Peng-Robinson |
Evaporator/Condenser calculation mode | Weighted |
Evaporator pressure drop (Hot/Cold) | 0.1 bar/0.2 bar |
Air condenser pressure drop | 0.2 bar |
Ambient air temperature | 30 °C |
Minimum temperature approach | 5 °C |
Pump efficiency | 80% |
Expander isentropic efficiency | 75% |
Total ∆P in the heating oil system | 3 bar |
Unit | R290 | R600a | R601a | |
---|---|---|---|---|
Evaporator pressure | kPa | 2506 ± 32% | 1007 ± 53% | 400 ± 145% |
Net power | kW | 872 ± 64% | 839 ± 75% | 743 ± 71% |
Efficiency | % | 4.55 ± 36% | 4.56 ± 43% | 4.55 ± 58% |
Flow rate | m3/h | 389 ± 40% | 305 ± 43% | 231 ± 40% |
Pumping power | kW | 376 ± 52% | 232 ± 47% | 177 ± 35% |
Variable | Nominal | Unit | SDV% | Max% | Min% | |
---|---|---|---|---|---|---|
Exhaust gas from turbine | Flow rate | 6437 | kmol/h | 2.2 | 103.3 | 88.9 |
Temperature | 550 | °C | 0.36 | 100.9 | 98.7 | |
Compressed NG | Flow rate | 17,620 | kmol/h | 1.65 | 119.6 | 96.0 |
Temperature | 131 | °C | 1.33 | 104.9 | 96.5 | |
Lean amine cooler | Flow rate | 17,480 | kmol/h | 0.95 | 103.9 | 97.1 |
Temperature | 87 | °C | 1.15 | 109.3 | 97.0 | |
Amine regeneration condenser | Flow rate | 1594 | kmol/h | 0.95 | 103.9 | 97.2 |
Temperature | 94 | °C | 1.52 | 103.4 | 92.2 | |
Ambient air | Temperature | 25 | °C | 25.2 | 162.2 | 53.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berchiche, A.; Guenoune, M.; Belaadi, S.; Léonard, G. Optimal Energy Integration and Off-Design Analysis of an Amine-Based Natural Gas Sweetening Unit. Appl. Sci. 2023, 13, 6559. https://doi.org/10.3390/app13116559
Berchiche A, Guenoune M, Belaadi S, Léonard G. Optimal Energy Integration and Off-Design Analysis of an Amine-Based Natural Gas Sweetening Unit. Applied Sciences. 2023; 13(11):6559. https://doi.org/10.3390/app13116559
Chicago/Turabian StyleBerchiche, Amine, Mohamed Guenoune, Salah Belaadi, and Grégoire Léonard. 2023. "Optimal Energy Integration and Off-Design Analysis of an Amine-Based Natural Gas Sweetening Unit" Applied Sciences 13, no. 11: 6559. https://doi.org/10.3390/app13116559
APA StyleBerchiche, A., Guenoune, M., Belaadi, S., & Léonard, G. (2023). Optimal Energy Integration and Off-Design Analysis of an Amine-Based Natural Gas Sweetening Unit. Applied Sciences, 13(11), 6559. https://doi.org/10.3390/app13116559