Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant-Derived Extracts
2.2. Reagents and Antibodies
2.3. DPPH Radical Scavenging Assay
2.4. Total Antioxidant Capacity
2.5. Cell Culture and Relative Cell Viability
2.6. Flow Cytometry Analysis
2.6.1. ROS Production
2.6.2. Depolarization of Mitochondrial Membrane Potential
2.7. Reverse-Transcription Polymerase Chain Reaction (RT-PCR)
2.8. Western Blotting
2.9. Measurement of ROS Production in Zebrafish Larvae
2.10. Statistical Analysis
3. Results
3.1. FBCC-EP858, FBCC-EP920, and FBCC-EP1014 Exhibit Strong DPPH Radical Scavenging Activity
3.2. FBCC-EP858, FBCC-EP920, and FBCC-EP1014 Regulate the Viability of RAW 264.7 Macrophages Depending on Their Concentrations
3.3. FBCC-EP858, FBCC-EP920, and FBCC-EP1014 Alleviate H2O2-Induced ROS Production in RAW 264.7 Cells and Zebrafish Larvae
3.4. FBCC-EP858, FBCC-EP920, and FBCC-EP1014 Maintain Mitochondrial Membrane Potential in H2O2-Treated RAW 264.7 Macrophages
3.5. FBCC-EP858, FBCC-EP920, and FBCC-EP1014 Upregulate the Expression of Nrf2 and HO-1 in RAW 264.7 Macrophages
3.6. HO-1 Inhibition Reduces the Antioxidant Activity of FBCC-EP858, FBCC-EP920, and FBCC-EP1014
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Koutsaliaris, I.K.; Moschonas, I.C.; Pechlivani, L.M.; Tsouka, A.N.; Tselepis, A.D. Inflammation, oxidative stress, vascular aging and atherosclerotic ischemic stroke. Curr. Med. Chem. 2022, 29, 5496–5509. [Google Scholar]
- Azmanova, M.; Pitto-Barry, A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem 2022, 23, e202100641. [Google Scholar] [CrossRef]
- Juan, C.A.; Perez de la Lastra, J.M.; Plou, F.J.; Perez-Lebena, E. The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev. 2019, 2019, 5080843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- He, L.; He, T.; Farrar, S.; Ji, L.; Liu, T.; Ma, X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017, 44, 532–553. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Pi, J.; Zhang, Q. Signal amplification in the KEAP1-NRF2-ARE antioxidant response pathway. Redox Biol. 2022, 54, 102389. [Google Scholar] [CrossRef]
- Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J. Biol. Chem. 2009, 284, 13291–13295. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, H.; Yamamoto, M. Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol. Med. 2004, 10, 549–557. [Google Scholar] [CrossRef]
- Loboda, A.; Damulewicz, M.; Pyza, E.; Jozkowicz, A.; Dulak, J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: An evolutionarily conserved mechanism. Cell. Mol. Life Sci. 2016, 73, 3221–3247. [Google Scholar] [CrossRef] [Green Version]
- Yagishita, Y.; Gatbonton-Schwager, T.N.; McCallum, M.L.; Kensler, T.W. Current landscape of NRF2 biomarkers in clinical trials. Antioxidants 2020, 9, 716. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Z.; Huang, Y.; Zhang, Y.; Zhao, L.; Li, W. Clinical research progress of small molecule compounds targeting Nrf2 for treating inflammation-related diseases. Antioxidants 2022, 11, 1564. [Google Scholar] [CrossRef] [PubMed]
- Marzioni, D.; Mazzucchelli, R.; Fantone, S.; Tossetta, G. NRF2 modulation in TRAMP mice: An in vivo model of prostate cancer. Mol. Biol. Rep. 2023, 50, 873–881. [Google Scholar] [CrossRef] [PubMed]
- Saw, C.L.; Kong, A.N. Nuclear factor-erythroid 2-related factor 2 as a chemopreventive target in colorectal cancer. Expert Opin. Ther. Targets 2011, 15, 281–295. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Long, F.; Lin, H.; Wang, T. Dietary phytochemicals targeting Nrf2 for chemoprevention in breast cancer. Food Funct. 2022, 13, 4273–4285. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef]
- Szymanska, R.; Pospisil, P.; Kruk, J. Plant-derived antioxidants in disease prevention. Oxid. Med. Cell. Longev. 2016, 2016, 1920208. [Google Scholar] [CrossRef]
- Kasote, D.M.; Katyare, S.S.; Hegde, M.V.; Bae, H. Significance of antioxidant potential of plants and its relevance to therapeutic applications. Int. J. Biol. Sci. 2015, 11, 982–991. [Google Scholar] [CrossRef] [Green Version]
- Abbate, F.; Maugeri, A.; Laurà, R.; Levanti, M.; Navarra, M.; Cirmi, S.; Germanà, A. Zebrafish as a useful model to study oxidative stress-linked disorders: Focus on flavonoids. Antioxidants 2021, 10, 668. [Google Scholar] [CrossRef]
- Kumar, H.; Kim, I.S.; More, S.V.; Kim, B.W.; Choi, D.K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 2014, 31, 109–139. [Google Scholar] [CrossRef]
- Deng, W.; Duan, Z.; Li, Y.; Cui, H.; Peng, C.; Yuan, S. Characterization of target-site resistance to ALS-inhibiting herbicides in Ammannia multiflora populations. Weed Sci. 2022, 70, 292–297. [Google Scholar] [CrossRef]
- Upadhyay, H.C.; Dwivedi, G.R.; Darokar, M.P.; Chaturvedi, V.; Srivastava, S.K. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med. 2012, 78, 79–81. [Google Scholar] [CrossRef]
- Upadhyay, H.C.; Sisodia, B.S.; Agrawal, J.; Pal, A.; Darokar, M.P.; Srivastava, S.K. Antimalarial potential of extracts and isolated compounds from four species of genus Ammannia. Med. Chem. Res. 2014, 23, 870–876. [Google Scholar] [CrossRef]
- Upadhyay, H.C.; Jaiswal, N.; Tamrakar, A.K.; Srivastava, A.K.; Gupta, N.; Srivastava, S.K. Antihyperglycemic agents from Ammannia multiflora. Nat. Prod. Commun. 2012, 7, 899–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus Ammannia. Curr. Top. Med. Chem. 2019, 19, 784–794. [Google Scholar] [CrossRef]
- Upadhyay, H.; Saini, D.; Srivastava, S. Phytochemical analysis of Ammannia multiflora. Res. J. Phytochem. 2011, 5, 170–176. [Google Scholar]
- Naqinezhad, A.; Larijani, N.N. Ammannia coccinea (Lythraceae), a new record for the Flora Iranica area. Phytol. Balca. 2017, 23, 35–38. [Google Scholar]
- Jarolímek, I.; Kolbek, J. Plant communities dominated by Salix gracilistyla in Korean Peninsula and Japan. Biologia 2006, 61, 63–70. [Google Scholar] [CrossRef]
- Jeong, Y.-U.; Park, Y.-J. Studies on antioxidant and whitening activities of Salix gracilistyla extracts. J. Soc. Cosmet. Sci. Korea 2018, 44, 317–325. [Google Scholar]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef] [Green Version]
- Molagoda, I.M.; Lee, K.T.; Choi, Y.H.; Kim, G.-Y. Anthocyanins from Hibiscus syriacus L. inhibit oxidative stress-mediated apoptosis by activating the Nrf2/HO-1 signaling pathway. Antioxidants 2020, 9, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molagoda, I.M.; Athapaththu, A.M.; Choi, Y.H.; Park, C.; Jin, C.-Y.; Kang, C.-H.; Lee, M.-H.; Kim, G.-Y. Fisetin inhibits NLRP3 inflammasome by suppressing TLR4/MD2-mediated mitochondrial ROS production. Antioxidants 2021, 10, 1215. [Google Scholar] [CrossRef] [PubMed]
- Jayasingha, J.; Lee, K.; Choi, Y.; Kang, C.-H.; Lee, M.-H.; Kim, G.-Y. Aqueous extract of freeze-dried Protaetia brevitarsis larvae promotes osteogenesis by activating β-catenin signaling. Asian Pac. J. Trop. Biomed. 2022, 12, 115–123. [Google Scholar]
- Molagoda, I.M.N.; Kang, C.-H.; Lee, M.-H.; Choi, Y.H.; Lee, C.-M.; Lee, S.; Kim, G.-Y. Fisetin promotes osteoblast differentiation and osteogenesis through GSK-3β phosphorylation at Ser9 and consequent β-catenin activation, inhibiting osteoporosis. Biochem. Pharmacol. 2021, 192, 114676. [Google Scholar] [CrossRef] [PubMed]
- Alestrom, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suski, J.M.; Lebiedzinska, M.; Bonora, M.; Pinton, P.; Duszynski, J.; Wieckowski, M.R. Relation between mitochondrial membrane potential and ROS formation. Methods Mol. Biol. 2012, 810, 183–205. [Google Scholar]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Cabello-Verrugio, C.; Simon, F.; Trollet, C.; Santibanez, J.F. Oxidative stress in disease and aging: Mechanisms and therapies 2016. Oxid. Med. Cell. Longev. 2017, 2017, 4310469. [Google Scholar] [CrossRef]
- Luo, J.; Mills, K.; le Cessie, S.; Noordam, R.; van Heemst, D. Ageing, age-related diseases and oxidative stress: What to do next? Ageing Res. Rev. 2020, 57, 100982. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Lin, Q.; Liang, Y. Plant-derived antioxidants protect the nervous system from aging by inhibiting oxidative stress. Front. Aging Neurosci. 2020, 12, 209. [Google Scholar] [CrossRef] [PubMed]
- Akbari, B.; Baghaei-Yazdi, N.; Bahmaie, M.; Mahdavi Abhari, F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022, 48, 611–633. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kucharska, E.; Kowalczyk, T.; Zajdel, K.; Ceglinski, T.; Zajdel, R. Antioxidant properties of plant-derived phenolic compounds and their effect on skin fibroblast cells. Antioxidants 2021, 10, 726. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M. Plant-derived antioxidants: Significance in skin health and the ageing process. Int. J. Mol. Sci. 2022, 23, 585. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Lu, F.; Wang, L.; Ding, Y.; Kang, X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: A review. Food Addit. Contam. Part A 2021, 38, 1237–1248. [Google Scholar] [CrossRef]
- Graham, S.A.; Timmermann, B.N.; Mabry, T.J. Flavonoid glycosides in Ammannia coccinea (Lythraceae). J. Nat. Prod. 1980, 43, 644–645. [Google Scholar] [CrossRef]
Gene (1) | Primer Sequence (5′→3′) | Size (2) | Gene Accession No. |
---|---|---|---|
Nfr2 | F: 5′-TGGACGGGACTATTGAAGGC-3′ | 735 bp | NM_010902.5 |
R: 5′-GCCGCCTTTTCAGTAGATGG-3′ | |||
HO-1 | F: 5′-TGAAGGAGGCCACCAAGGAG-3′ | 375 bp | NM_010442.2 |
R: 5′-AGAGGTCACCCAGGTAGCGG-3′ | |||
GAPDH | F: 5′-ACCACAGTCCATGCCATCAC-3′ | 450 bp | NM_001411843.1 |
R: 5′-CACCACCCTGTTGCTGTAGC-3′ |
FBCC No. | Con. (μg/mL) | DPPH Radical Scavenging Activity (%) | Total Antioxidant Activity (Trolox Con., mM) |
---|---|---|---|
FBCC-EP858 | 0 | 3.7 ± 0.4 | 0.0523 ± 0.0037 |
6.25 | 30.4 ± 0.1 | 0.0803 ± 0.0007 | |
12.5 | 48.5 ± 1.3 | 0.1160 ± 0.0003 | |
25 | 69.3 ± 2.2 | 0.1180 ± 0.0033 | |
50 | 84.6 ± 2.3 | 0.1830 ± 0.0000 | |
100 | 94.0 ± 0.3 | 0.2850 ± 0.0037 | |
FBCC-EP920 | 0 | 03.9 ± 0.5 | 0.0600 ± 0.0010 |
6.25 | 26.4 ± 2.6 | 0.0810 ± 0.0010 | |
12.5 | 47.2 ± 1.8 | 0.0883 ± 0.0017 | |
25 | 68.4 ± 3.3 | 0.1540 ± 0.0010 | |
50 | 82.5 ± 2.3 | 0.2150 ± 0.0003 | |
100 | 94.1 ± 1.7 | 0.3860 ± 0.0013 | |
FBCC-EP1014 | 0 | 3.7 ± 0.5 | 0.0003 ± 0.0017 |
6.25 | 31.5 ± 0.8 | 0.0890 ± 0.0010 | |
12.5 | 49.2 ± 1.1 | 0.1080 ± 0.0010 | |
25 | 67.4 ± 4.2 | 0.1550 ± 0.0003 | |
50 | 87.0 ± 1.3 | 0.2270 ± 0.0027 | |
100 | 88.2 ± 0.3 | 0.4300 ± 0.0020 | |
Ascorbic acid | 20 (1) or 400 (2) μM | 53.8 ± 0.3 | 0.1010 ± 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayasingha, J.A.C.C.; Choi, Y.H.; Kang, C.-H.; Lee, M.-H.; Heo, M.-S.; Kim, G.-Y. Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway. Appl. Sci. 2023, 13, 6701. https://doi.org/10.3390/app13116701
Jayasingha JACC, Choi YH, Kang C-H, Lee M-H, Heo M-S, Kim G-Y. Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway. Applied Sciences. 2023; 13(11):6701. https://doi.org/10.3390/app13116701
Chicago/Turabian StyleJayasingha, Jayasingha Arachchige Chathuranga Chanaka, Yung Hyun Choi, Chang-Hee Kang, Mi-Hwa Lee, Moon-Soo Heo, and Gi-Young Kim. 2023. "Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway" Applied Sciences 13, no. 11: 6701. https://doi.org/10.3390/app13116701
APA StyleJayasingha, J. A. C. C., Choi, Y. H., Kang, C. -H., Lee, M. -H., Heo, M. -S., & Kim, G. -Y. (2023). Antioxidant Activities of Plant Extracts (Ammannia multiflora, Ammannia coccinea, and Salix gracilistyla) Activate the Nrf2/HO-1 Signaling Pathway. Applied Sciences, 13(11), 6701. https://doi.org/10.3390/app13116701