Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Silver Nanoparticles by Nitrosalsola Vermiculata (SN-SV)
2.2. Characterization of SN-SV
2.2.1. Size, Surface Charge, and Morphology
2.2.2. UV-VIS Spectrophotometrically
2.2.3. Antioxidant Activities
2.3. Topical SN-SV Cream Preparation
2.4. Characterization of SN-SV Cream
2.4.1. Evaluation of Emulsion Type
2.4.2. Determination of the SN-SV Content
2.4.3. Cream Homogeneity and Skin Irritation Test
2.4.4. Evaluation of pH and Viscosity Measurement
2.4.5. Ex Vivo Study
2.4.6. Physical Stability
2.5. Clinical Scoring of the Skin Lesions
2.6. In Vivo Experimental Study to Investigate the Wound Healing Activity
2.7. Statistical Analysis
3. Results
3.1. Size and Zeta Potential
3.2. SEM
3.3. UV-VIS Spectroscopy
3.4. Scavenging Efficacy
3.5. Characterization of SN-SV Cream
3.6. Evaluation of the Formulated Cream
3.7. Physical Stability
3.8. Macroscopic Clinical Scoring of the Wound Size
3.9. Histopathological Wound Scoring on Days 5, 11, and 15
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vishwanath, R.; Negi, B. Conventional and green methods of synthesis of silver nanoparticles and their antimicrobial properties. Curr. Res. Green Sustain. Chem. 2021, 4, 100205. [Google Scholar] [CrossRef]
- Rucavado, A.; Escalante, T.; Kalogeropoulos, K.; Camacho, E.; Gutiérrez, J.M.; Fox, J.W. Analysis of wound exudates reveals differences in the patterns of tissue damage and inflammation induced by the venoms of Daboia russelii and Bothrops asper in mice. Toxicon 2020, 186, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Devi, M.V.; Poornima, V.; Sivagnanam, U.T. Wound healing in second-degree burns in rats treated with silver sulfadiazine: A systematic review and meta-analysis. J. Wound Care 2022, 31 (Suppl. 4), S31–S45. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and impact of antioxidant hydrogel in chronic wound healing. Adv. Healthc. Mater. 2020, 9, 1901502. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Chaudhary, D.; Kumar, V.; Verma, A. Amelioration of diethylnitrosamine (DEN) induced renal oxidative stress and inflammation by Carissa carandas embedded silver nanoparticles in rodents. Toxicol. Rep. 2021, 8, 636–645. [Google Scholar] [CrossRef] [PubMed]
- Ihtisham, M.; Noori, A.; Yadav, S.; Sarraf, M.; Kumari, P.; Brestic, M.; Imran, M.; Jiang, F.; Yan, X.; Rastogi, A. Silver nanoparticle’s toxicological effects and phytoremediation. Nanomaterials 2021, 11, 2164. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Alhumaydhi, F.A.; Al Rugaie, O.; Tolba, N.S.; Mousa, A.M. Topical silver nanoparticles reduced with ethylcellulose enhance skin wound healing. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 744–754. [Google Scholar] [CrossRef]
- Vanlalveni, C.; Lallianrawna, S.; Biswas, A.; Selvaraj, M.; Changmai, B.; Rokhum, S.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature. RSC Adv. 2021, 11, 2804–2837. [Google Scholar] [CrossRef]
- Jain, N.; Jain, P.; Rajput, D.; Patil, U.K. Green synthesized plant-based silver nanoparticles: Therapeutic prospective for anticancer and antiviral activity. Micro Nano Syst. Lett. 2021, 9, 5. [Google Scholar] [CrossRef]
- Garibo, D.; Borbón-Nuñez, H.A.; de León, J.N.D.; García Mendoza, E.; Estrada, I.; Toledano-Magaña, Y.; Tiznado, H.; Ovalle-Marroquin, M.; Soto-Ramos, A.G.; Blanco, A.; et al. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Sci. Rep. 2020, 10, 12805. [Google Scholar] [CrossRef]
- Murshid, S.S.A.; Atoum, D.; Abou-Hussein, D.R.; Abdallah, H.M.; Hareeri, R.H.; Almukadi, H.; Edrada-Ebel, R. Genus Salsola: Chemistry, Biological Activities and Future Prospective—A Review. Plants 2022, 11, 714. [Google Scholar] [CrossRef] [PubMed]
- Naraginti, S.; Kumari, P.L.; Das, R.K.; Sivakumar, A.; Patil, S.H.; Andhalkar, V.V. Amelioration of excision wounds by topical application of green synthesized, formulated silver and gold nanoparticles in albino Wistar rats. Mater. Sci. Eng. C 2016, 62, 293–300. [Google Scholar] [CrossRef]
- Moreno, D.A.N.; Saladini, M.S.; Viroel, F.J.M.; Dini, M.M.J.; Pickler, T.B.; Filho, J.A.; Dos Santos, C.A.; Hanai-Yoshida, V.M.; Grotto, D.; Gerenutti, M.; et al. Are silver nanoparticles useful for treating second-degree burns? An experimental study in rats. Adv. Pharm. Bull. 2021, 11, 130–136. [Google Scholar] [CrossRef]
- Kang, Y.O.; Jung, J.Y.; Cho, D.; Kwon, O.H.; Cheon, J.Y.; Park, W.H. Antimicrobial silver chloride nanoparticles stabilized with chitosan oligomer for the healing of burns. Materials 2016, 9, 215. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.M.; Alotaibi, S.S.; Sayed, S.; Hassan, M.M.; Althobaiti, F.; Aldhahrani, A.; Youssef, G.B.A.; El-Shehawi, A.M. The Protective Impact of Salsola imbricata Leaf Extract from Taif against Acrylamide-Induced Hepatic Inflammation and Oxidative Damage: The Role of Antioxidants, Cytokines, and Apoptosis-Associated Genes. Front. Vet. Sci. 2022, 8, 817183. [Google Scholar] [CrossRef]
- Malik, A.Q.; Mir, T.U.; Kumar, D.; Mir, I.A.; Rashid, A.; Ayoub, M.; Shukla, S. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ. Sci. Pollut. Res. 2023, 30, 69796–69823. [Google Scholar] [CrossRef] [PubMed]
- Moghtet, S.; Menad, N.; Meddah, B.; Moussaoui, A. Effect of Salsola vermiculata. J. Fundam. Appl. Sci. 2018, 10, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Deeba, F.; Parveen, S.; Rashid, Z.; Aleem, A.; Raza, H. Green Synthesis and Evaluation of Lepidium didymum-mediated Silver Nanoparticles for in vitro Antibacterial Activity and Wound Healing in the Animal Model. J. Oleo Sci. 2023, 439, 429–439. [Google Scholar] [CrossRef] [PubMed]
- Rani, N.; Singla, R.K.; Redhu, R.; Narwal, S.; Bhatt, A. A Review on Green Synthesis of Silver Nanoparticles and its Role against Cancer. Curr. Top. Med. Chem. 2022, 22, 1460–1471. [Google Scholar]
- Shumail, H.; Khalid, S.; Ahmad, I.; Khan, H.; Amin, S.; Ullah, B. Review on green synthesis of silver nanoparticles through plants. Endocr. Metab. Immune Disord. 2021, 21, 994–1007. [Google Scholar] [CrossRef] [PubMed]
- Osman Mahmud, S.; Hamad Shareef, S.; Jabbar, A.A.; Hassan, R.R.; Jalal, H.K.; Abdulla, A.M. Green Synthesis of Silver Nanoparticles from Aqueous Extract of Tinospora crispa Stems Accelerate Wound Healing in Rats. Int. J. Low. Extrem. Wounds 2022, 2022, 15347346221133627. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Jin, M.H.; Chang, Y.H. Anti-inflammatory effect of Salsola komarovii extract with dissociated glucocorticoid activity. BMC Complement. Med. Ther. 2020, 20, 176. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Abdelfattah, A.; Bouazzaoui, A.; Osman, S.K.; Al-Moraya, I.S.; Showail, A.M.S.; Alsharidah, M.; Aboelela, A.; Al Rugaie, O.; Faris, T.M.; et al. Silver Nanoparticles Stabilized by Poly (Vinyl Pyrrolidone) with Potential Anticancer Activity towards Prostate Cancer. Bioinorg. Chem. Appl. 2022, 2022, 6181448. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Osman, S.K.; Alsharidah, M.; Rugaie, O.A.L.; Faris, T.M.; Alqasoumi, A.; Mousa, A.M.; Bouazzaoui, A. Green synthesis of silver nanoparticles reduced with Trigonella foenum-graecum and their effect on tumor necrosis factor-α in MCF7 cells. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5529–5539. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Al-Omar, M.S.; El-Readi, M.Z.; Alhowail, A.H.; Aldubayan, M.A.; Abdellatif, A.A.H. Formulation of ethyl cellulose microparticles incorporated pheophytin a isolated from suaeda vermiculata for antioxidant and cytotoxic activities. Molecules 2019, 24, 1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iordănescu, O.A.; Băla, M.; Iuga, A.C.; Pane, D.G.; Dascălu, I.; Bujancă, G.S.; David, I.; Hădărugă, N.G.; Hădărugă, D.I. Antioxidant activity and discrimination of organic apples (Malus domestica borkh.) cultivated in the western region of romania: A dpph ·kinetics–pca approach. Plants 2021, 10, 1957. [Google Scholar] [CrossRef]
- Abdellatif, A.A.H.; Tawfeek, H.M. Transfersomal Nanoparticles for Enhanced Transdermal Delivery of Clindamycin. AAPS PharmSciTech 2016, 17, 1067–1074. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Z.; Zhang, H.; He, Y. Viscosity Measurement in Biocondensates Using Deep-Learning-Assisted Single-Particle Rotational Analysis. J. Phys. Chem. B 2022, 126, 7541–7551. [Google Scholar] [CrossRef]
- Chang, Y.F.; Cheng, Y.H.; Ko, Y.C.; Chiou, S.H.; Jui-Ling Liu, C. Development of topical chitosan/β-glycerophosphate-based hydrogel loaded with levofloxacin in the treatment of keratitis: An ex-vivo study. Heliyon 2022, 8, e08697. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Mahjub, R.; Haddadi, R.; Vafaei, S.Y. Design and Optimization of Cationic Nanocapsules for Topical Delivery of Tretinoin: Application of the Box-Behnken Design, in Vitro Evaluation, and Ex Vivo Skin Deposition Study. BioMed Res. Int. 2021, 2021, 4603545. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, D.; Cao, Y. Physical stability, microstructure and interfacial properties of solid-oil-in-water (S/O/W) emulsions stabilized by sodium caseinate/xanthan gum complexes. Food Res. Int. 2023, 164, 112370. [Google Scholar] [CrossRef]
- Mousa, A.M.; Alhumaydhi, F.A.; Abdellatif, A.A.H.; Al Abdulmonem, W.; AlKhowailed, M.S.; Alsagaby, S.A.; Al Rugaie, O.; Alnuqaydan, A.M.; Aljohani, A.S.M.; Aljasir, M.; et al. Curcumin and ustekinumab cotherapy alleviates induced psoriasis in rats through their antioxidant, anti-inflammatory, and antiproliferative effects. Cutan. Ocul. Toxicol. 2022, 41, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Mousa, A.M.; Soliman, K.E.A.; Alhumaydhi, F.A.; Almatroudi, A.; Allemailem, K.S.; Alsahli, M.A.; Alrumaihi, F.; Aljasir, M.; Alwashmi, A.S.S.; Ahmed, A.A.; et al. Could allicin alleviate trastuzumab-induced cardiotoxicity in a rat model through antioxidant, anti-inflammatory, and antihyperlipidemic properties? Life Sci. 2022, 302, 120656. [Google Scholar] [CrossRef]
- Sedighi, A.; Mehrabani, D.; Shirazi, R. Histopathological evaluation of the healing effects of human amniotic membrane transplantation in third-degree burn wound injuries. Comp. Clin. Path. 2016, 25, 381–385. [Google Scholar] [CrossRef]
- Adib, Z.M.; Ghanbarzadeh, S.; Kouhsoltani, M.; Khosroshahi, A.Y.; Hamishehkar, H. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study. Adv. Pharm. Bull. 2016, 6, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Ghasemiyeh, P.; Mohammadi-Samani, S. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther. 2020, 14, 3271–3289. [Google Scholar] [CrossRef]
- Patzelt, A.; Richter, H.; Knorr, F.; Schäfer, U.; Lehr, C.M.; Dähne, L.; Sterry, W.; Lademann, J. Selective follicular targeting by modification of the particle sizes. J. Control. Release 2011, 150, 45–48. [Google Scholar] [CrossRef]
- Kaufman, E.D.; Belyea, J.; Johnson, M.C.; Nicholson, Z.M.; Ricks, J.L.; Shah, P.K.; Bayless, M.; Pettersson, T.; Feldotö, Z.; Blomberg, E.; et al. Probing protein adsorption onto mercaptoundecanoic acid stabilized gold nanoparticles and surfaces by quartz crystal microbalance and zeta-potential measurements. Langmuir 2007, 23, 6053–6062. [Google Scholar] [CrossRef]
- Roto, R.; Rasydta, H.P.; Suratman, A.; Aprilita, N.H. Effect of reducing agents on physical and chemical properties of silver nanoparticles. Indones. J. Chem. 2018, 18, 614–620. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Ahmad, F.; Koivisto, J.T.; Kellomäki, M. Green synthesis of controlled size gold and silver nanoparticles using antioxidant as capping and reducing agent. Colloids Interface Sci. Commun. 2020, 39, 100322. [Google Scholar] [CrossRef]
- Tarrés, Q.; Aguado, R.; Zoppe, J.O.; Mutjé, P.; Fiol, N.; Delgado-Aguilar, M. Dynamic Light Scattering Plus Scanning Electron Microscopy: Usefulness and Limitations of a Simplified Estimation of Nanocellulose Dimensions. Nanomaterials 2022, 12, 4288. [Google Scholar] [CrossRef]
- Bhagat, M.; Rajput, S.; Arya, S.; Khan, S.; Lehana, P. Biological and electrical properties of biosynthesized silver nanoparticles. Bull. Mater. Sci. 2015, 38, 1253–1258. [Google Scholar] [CrossRef] [Green Version]
- Salari, S.; Bahabadi, S.E.; Samzadeh-Kermani, A.; Yosefzaei, F. In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract. Iran. J. Pharm. Res. 2019, 18, 430–445. [Google Scholar] [PubMed]
- Khanal, L.N.; Sharma, K.R.; Paudyal, H.; Parajuli, K.; Dahal, B.; Ganga, G.C.; Pokharel, Y.R.; Kalauni, S.K. Green Synthesis of Silver Nanoparticles from Root Extracts of Rubus ellipticus Sm. and Comparison of Antioxidant and Antibacterial Activity. J. Nanomater. 2022, 2022, 1832587. [Google Scholar] [CrossRef]
- Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Irtegun-Kandemir, S.; Kavak, D.E. Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities. Bioinorg. Chem. Appl. 2021, 2021, 2058149. [Google Scholar] [CrossRef] [PubMed]
- Afreen, A.; Ahmed, R.; Mehboob, S.; Tariq, M.; Alghamdi, H.A.; Zahid, A.A.; Ali, I.; Malik, K.; Hasan, A. Phytochemical-assisted biosynthesis of silver nanoparticles from Ajuga bracteosa for biomedical applications. Mater. Res. Express 2020, 7, 075404. [Google Scholar] [CrossRef]
- Mahi Priya, S.R.; Roselin, R.B.; Karuppiah, A.; Sankar, V. Formulation of Mupirocin Adsorbed Silver Nanoparticle with Antibiofilm Agents for Enhancing Antibacterial Activity. Indian J. Pharm. Educ. Res. 2022, 56, 50–57. [Google Scholar] [CrossRef]
- Ortega, M.P.; López-Marín, L.M.; Millán-Chiu, B.; Manzano-Gayosso, P.; Acosta-Torres, L.S.; García-Contreras, R.; Manisekaran, R. Polymer mediated synthesis of cationic silver nanoparticles as an effective anti-fungal and anti-biofilm agent against Candida species. Colloid Interface Sci. Commun. 2021, 43, 100449. [Google Scholar] [CrossRef]
- Allaw, M.; Pleguezuelos-Villa, M.; Manca, M.L.; Caddeo, C.; Aroffu, M.; Nacher, A.; Diez-Sales, O.; Saurí, A.R.; Ferrer, E.E.; Fadda, A.M.; et al. Innovative strategies to treat skin wounds with mangiferin: Fabrication of transfersomes modified with glycols and mucin. Nanomedicine 2020, 15, 1671–1685. [Google Scholar] [CrossRef] [PubMed]
- Zaid, N.A.M.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Lum, P.T.; Begum, M.Y.; Rani, N.N.I.M.; Vaijanathappa, J.; Wu, Y.S.; Subramaniyan, V.; et al. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des. Devel. Ther. 2022, 16, 23–66. [Google Scholar] [CrossRef]
- Alavi, M.; Varma, R.S. Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose 2021, 28, 8295–8311. [Google Scholar] [CrossRef]
- Bhubhanil, S.; Talodthaisong, C.; Khongkow, M.; Namdee, K.; Wongchitrat, P.; Yingmema, W.; Hutchison, J.A.; Lapmanee, S.; Kulchat, S. Enhanced wound healing properties of guar gum/curcumin-stabilized silver nanoparticle hydrogels. Sci. Rep. 2021, 11, 21836. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Kaya, G.; Bayram, S.; Kurek-Górecka, A.; Olczyk, P. Green Synthesis, Characterization, Antioxidant, Antibacterial and Enzyme Inhibition Effects of Chestnut (Castanea sativa) Honey-Mediated Silver Nanoparticles. Molecules 2023, 28, 2762. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, A.B.A.; Mohamed, A.; El-Naggar, N.E.A.; Mahrous, H.; Nasr, G.M.; Abdella, A.; Ahmed, R.H.; Irmak, S.; Elsayed, M.S.A.; Selim, S.; et al. Antioxidant and Antibacterial Activities of Silver Nanoparticles Biosynthesized by Moringa oleifera through Response Surface Methodology. J. Nanomater. 2022, 2022, 9984308. [Google Scholar] [CrossRef]
Formulation | pH | Viscosity (cPs) | Homogeneity | Permeated Quantities (µg/cm2) | Flux (mg/cm2/h) | Apparent Permeability Coefficient (cm/h) |
---|---|---|---|---|---|---|
Base cream | 7.11 ± 0.12 | 9801 ± 140 | Good | 0.46 ± 0.9 | 1.01 × 10 − 3 ± 0.001 | 0.009 ± 0.001 |
SN-SV cream | 7.01 ± 0.31 | 15,501 ± 320.01 | Good | 104.4 ± 3.11 | 35.6 × 10 − 3 ± 0.002 | 1.91 ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdellatif, A.A.H.; Rugaie, O.A.; Alhumaydhi, F.A.; Tolba, N.S.; Mousa, A.M. Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing. Appl. Sci. 2023, 13, 6912. https://doi.org/10.3390/app13126912
Abdellatif AAH, Rugaie OA, Alhumaydhi FA, Tolba NS, Mousa AM. Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing. Applied Sciences. 2023; 13(12):6912. https://doi.org/10.3390/app13126912
Chicago/Turabian StyleAbdellatif, Ahmed A. H., Osamah Al Rugaie, Fahad A. Alhumaydhi, Nahla Sameh Tolba, and Ayman M. Mousa. 2023. "Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing" Applied Sciences 13, no. 12: 6912. https://doi.org/10.3390/app13126912
APA StyleAbdellatif, A. A. H., Rugaie, O. A., Alhumaydhi, F. A., Tolba, N. S., & Mousa, A. M. (2023). Eco-Friendly Synthesis of Silver Nanoparticles by Nitrosalsola vermiculata to Promote Skin Wound Healing. Applied Sciences, 13(12), 6912. https://doi.org/10.3390/app13126912