Bioaccumulation of Trace Elements along the Body Longitudinal Axis in Honey Bees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Honey Bee Sampling Campaign
2.3. Metal Analysis
2.4. Honeybee Contamination Index
HCImean1 = mean HCI1; HCImean2 = mean HCI2
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bromenshenk, J.J.; Carlson, S.R.; Simpson, J.C.; Thomas, J.M. Pollution Monitoring of Puget Sound with Honey Bees. Science 1985, 227, 632–634. [Google Scholar] [CrossRef] [PubMed]
- Porrini, C.; Sabatini, A.G.; Girotti, S.; Ghini, S.; Medrzycki, P.; Grillenzoni, F.; Bortolotti, L.; Gattavecchia, E.; Celli, G. Honey Bees and Bee Products as Monitors of the Environmental Contamination. Apiacta 2003, 38, 63–70. [Google Scholar]
- Bogdanov, S. Contaminants of Bee Products. Apidologie 2006, 37, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Zhelyazkova, I. Honeybees—Bioindicators for Environmental Quality. Bulg. J. Agric. Sci. 2012, 18, 435–442. [Google Scholar]
- van der Steen, J.J.M.; Cornelissen, B.; Blacquière, T.; Pijnenburg, J.E.M.L.; Severijnen, M. Think Regionally, Act Locally: Metals in Honeybee Workers in the Netherlands (Surveillance Study 2008). Environ. Monit. Assess. 2016, 188, 463. [Google Scholar] [CrossRef] [Green Version]
- Herrero-Latorre, C.; Barciela-García, J.; García-Martín, S.; Peña-Crecente, R.M. The Use of Honeybees and Honey as Environmental Bioindicators for Metals and Radionuclides: A Review. Environ. Rev. 2017, 25, 463–480. [Google Scholar] [CrossRef]
- Devillers, J.; Pham-Delègue, M.-H. Honey Bees: Estimating the Environmental Impact of Chemicals; Taylor & Francis: London, UK, 2002; ISBN 0-203-21865-5. [Google Scholar]
- Crane, E. On the Scientific Front. Bee World 1984, 65, 47–49. [Google Scholar] [CrossRef]
- Leita, L.; Muhlbachova, G.; Cesco, S.; Barbattini, R.; Mondini, C. Investigation of the Use of Honey Bees and Honey Bee Products to Assess Heavy Metals Contamination. Environ. Monit. Assess. 1996, 43, 1–9. [Google Scholar] [CrossRef]
- Celli, G.; Maccagnani, B. Honey Bees as Bioindicators of Environmental Pollution. Bull. Insectology 2003, 56, 137–139. [Google Scholar]
- Ruschioni, S.; Riolo, P.; Minuz, R.L.; Stefano, M.; Cannella, M.; Porrini, C.; Isidoro, N. Biomonitoring with Honeybees of Heavy Metals and Pesticides in Nature Reserves of the Marche Region (Italy). Biol. Trace Elem. Res. 2013, 154, 226–233. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Molero, R.; Gaju, M.; van der Steen, J.; Porrini, C.; Ruiz, J.A. Assessment of Heavy Metal Pollution in Córdoba (Spain) by Biomonitoring Foraging Honeybee. Environ. Monit. Assess. 2015, 187, 651. [Google Scholar] [CrossRef] [PubMed]
- Zarić, N.M.; Ilijević, K.; Stanisavljević, L.; Gržetić, I. Use of Honeybees (Apis mellifera L.) as Bioindicators for Assessment and Source Appointment of Metal Pollution. Environ. Sci. Pollut. Res. 2017, 24, 25828–25838. [Google Scholar] [CrossRef] [PubMed]
- Desneux, N.; Decourtye, A.; Delpuech, J.-M. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Hladun, K.R.; Di, N.; Liu, T.; Trumble, J.T. Metal Contaminant Accumulation in the Hive: Consequences for Whole-colony Health and Brood Production in the Honey Bee (Apis mellifera L.). Environ. Toxicol. Chem. 2016, 35, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ren, J.; Hao, X.; Liu, D.; Zhang, R.; Yi, M.W.Á.F. Characterization of Protein Expression of Platanus Pollen Following Exposure to Gaseous Pollutants and Vehicle Exhaust Particles. Aerobiologia 2014, 30, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic Insecticides (Neonicotinoids and Fipronil): Trends, Uses, Mode of Action and Metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef]
- O’Neal, S.T.; Anderson, T.D.; Wu-Smart, J.Y. Interactions between Pesticides and Pathogen Susceptibility in Honey Bees. Curr. Opin. Insect Sci. 2018, 26, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Harwood, G.P.; Dolezal, A.G. Pesticide–Virus Interactions in Honey Bees: Challenges and Opportunities for Understanding Drivers of Bee Declines. Viruses 2020, 12, 566. [Google Scholar] [CrossRef]
- Hodge, S.; Schweiger, O.; Klein, A.-M.; Potts, S.G.; Costa, C.; Albrecht, M.; de Miranda, J.R.; Mand, M.; De la Rúa, P.; Rundlöf, M.; et al. Design and Planning of a Transdisciplinary Investigation into Farmland Pollinators: Rationale, Co-Design, and Lessons Learned. Sustainability 2022, 14, 10549. [Google Scholar] [CrossRef]
- Tosi, S.; Sfeir, C.; Carnesecchi, E.; vanEngelsdorp, D.; Chauzat, M.-P. Lethal, Sublethal, and Combined Effects of Pesticides on Bees: A Meta-Analysis and New Risk Assessment Tools. Sci. Total Environ. 2022, 844, 156857. [Google Scholar] [CrossRef]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy Metal (Hg, Cr, Cd, and Pb) Contamination in Urban Areas and Wildlife Reserves: Honeybees as Bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Burden, C.M.; Morgan, M.O.; Hladun, K.R.; Amdam, G.V.; Trumble, J.J.; Smith, B.H. Acute Sublethal Exposure to Toxic Heavy Metals Alters Honey Bee (Apis mellifera) Feeding Behavior. Sci. Rep. 2019, 9, 4253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Gutiérrez, A.; Garnacho, E.; Bayona, J.M.; Albaigés, J. Screening Ecological Risk Assessment of Persistent Organic Pollutants in Mediterranean Sea Sediments. Environ. Int. 2007, 33, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Millán, J.; Mateo, R.; Taggart, M.A.; López-Bao, J.V.; Viota, M.; Monsalve, L.; Camarero, P.R.; Blázquez, E.; Jiménez, B. Levels of Heavy Metals and Metalloids in Critically Endangered Iberian Lynx and Other Wild Carnivores from Southern Spain. Sci. Total Environ. 2008, 399, 193–201. [Google Scholar] [CrossRef]
- Gall, J.E.; Boyd, R.S.; Rajakaruna, N. Transfer of Heavy Metals through Terrestrial Food Webs: A Review. Environ. Monit. Assess. 2015, 187, 201. [Google Scholar] [CrossRef] [Green Version]
- Jinadasa, B.K.K.K.; Chathurika, G.S.; Jayaweera, C.D.; Jayasinghe, G.D.T.M. Mercury and Cadmium in Swordfish and Yellowfin Tuna and Health Risk Assessment for Sri Lankan Consumers. Food Addit. Contam. Part B 2019, 12, 75–80. [Google Scholar] [CrossRef] [PubMed]
- ATSDR (Agency for Toxic Substances and Disease Registry). Substance Priority List 2022. Available online: https://www.atsdr.cdc.gov/spl/index.html#2022spl (accessed on 1 March 2023).
- Rimondi, V.; Costagliola, P.; Lattanzi, P.; Morelli, G.; Cara, G.; Cencetti, C.; Fagotti, C.; Fredduzzi, A.; Marchetti, G.; Sconocchia, A.; et al. A 200 Km-Long Mercury Contamination of the Paglia and Tiber Floodplain: Monitoring Results and Implications for Environmental Management. Environ. Pollut. 2019, 255, 113191. [Google Scholar] [CrossRef]
- Pattelli, G.; Rimondi, V.; Benvenuti, M.; Chiarantini, L.; Colica, A.; Costagliola, P.; Benedetto, F.; Lattanzi, P.; Paolieri, M.; Rinaldi, M. Effects of the November 2012 Flood Event on the Mobilization of Hg from the Mount Amiata Mining District to the Sediments of the Paglia River Basin. Minerals 2014, 4, 241–256. [Google Scholar] [CrossRef] [Green Version]
- Lorenzoni, M.; Mearelli, M.; Ghetti, L. Native and Exotic Fish Species in the Tiber River Watershed (Umbria—Italy) and Their Relationship to Thelongitudinal Gradient. Bull. Fr. Pêche Piscic. 2006, 382, 19–44. [Google Scholar] [CrossRef] [Green Version]
- Tacconi, P.; De Rosa, P.; Fredduzzi, A.; Cencetti, C. Il Fiume Tevere: Produzione di Sedimenti, Trasporto Solido, Centrali Idroelettriche e Deficit Sedimentario alla Foce. Il “Nodo” Di Corbara-Alviano 2020; Università degli Studi di Perugia: Perugia, Italy, 2020. [Google Scholar]
- Regione Umbria Piano Tutela Acque—Parte II Risorsa Idrica 2010. Available online: https://www.regione.umbria.it/ambiente/piano-di-tutela-delle-acque1 (accessed on 1 March 2023).
- Rimondi, V.; Gray, J.E.; Costagliola, P.; Vaselli, O.; Lattanzi, P. Concentration, Distribution, and Translocation of Mercury and Methylmercury in Mine-Waste, Sediment, Soil, Water, and Fish Collected near the Abbadia San Salvatore Mercury Mine, Monte Amiata District, Italy. Sci. Total Environ. 2012, 414, 318–327. [Google Scholar] [CrossRef]
- Rimondi, V.; Bardelli, F.; Benvenuti, M.; Costagliola, P.; Gray, J.E.; Lattanzi, P. Mercury Speciation in the Mt. Amiata Mining District (Italy): Interplay between Urban Activities and Mercury Contamination. Chem. Geol. 2014, 380, 110–118. [Google Scholar] [CrossRef]
- Rimondi, V.; Costagliola, P.; Gray, J.E.; Lattanzi, P.; Nannucci, M.; Paolieri, M.; Salvadori, A. Mass Loads of Dissolved and Particulate Mercury and Other Trace Elements in the Mt. Amiata Mining District, Southern Tuscany (Italy). Environ. Sci. Pollut. Res. 2014, 21, 5575–5585. [Google Scholar] [CrossRef] [PubMed]
- Colica, A.; Benvenuti, M.; Chiarantini, L.; Costagliola, P.; Lattanzi, P.; Rimondi, V.; Rinaldi, M. From Point Source to Diffuse Source of Contaminants: The Example of Mercury Dispersion in the Paglia River (Central Italy). CATENA 2019, 172, 488–500. [Google Scholar] [CrossRef]
- Bombace, M.A. Ricerca Ecologica Sulle Zone Mercurifere Del Monte Amiata. Riv. Ig. E Sanità Pubblica 1973, 29, 191–237. [Google Scholar]
- Benvenuti, M.; Costagliola, P. Il Distretto Mercurifero Del Comprensorio Amiatino: Nuovi Dati Sull’impatto Ambientale Nel Sistema Fluviale Paglia-Tevere. Geol. Ambient. 2016, 24, 2–5. [Google Scholar]
- Goretti, E.; Pallottini, M.; Rossi, R.; La Porta, G.; Gardi, T.; Cenci Goga, B.T.; Elia, A.C.; Galletti, M.; Moroni, B.; Petroselli, C.; et al. Heavy Metal Bioaccumulation in Honey Bee Matrix, an Indicator to Assess the Contamination Level in Terrestrial Environments. Environ. Pollut. 2020, 256, 113388. [Google Scholar] [CrossRef]
- Analytical Methods Committee. Is My Calibration Linear? Analyst 1994, 119, 2363. [Google Scholar] [CrossRef]
- UNICHIM. Chemistry Laboratory Guides to Method Validation; N. 179/1; UNICHIM: Milan, Italy, 2001. [Google Scholar]
- EURACHEM. The Fitness for Purpose of Analytical Methods. A Laboratory Guide to Method Validation and Related Topics. 1st Internet Version; EURACHEM: Athens, Greece, 1998. [Google Scholar]
- DiSTAL; UniBo Università Politecnica Delle Marche, Facoltà Di Agraria, Dipartimento Di Scienze Ambientali e Delle Produzioni Vegetali. Biomonitoraggio Ambientale Mediante l’Utilizzo di Apis mellifera. Available online: http://www.ambiente.marche.it/Portals/0/Ambiente/Natura/2010_api_relazione.pdf (accessed on 1 March 2023).
- Steen, J.J.M.V.D.; Kraker, J.D.; Grotenhuis, T. Spatial and Temporal Variation of Metal Concentrations in Adult Honeybees (Apis mellifera L.). Environ. Monit. Assess. 2012, 184, 4119–4126. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Zarić, N.M.; Brodschneider, R.; Goessler, W. Honey Bees as Biomonitors—Variability in the Elemental Composition of Individual Bees. Environ. Res. 2022, 204, 112237. [Google Scholar] [CrossRef]
- Zarić, N.M.; Braeuer, S.; Goessler, W. Arsenic Speciation Analysis in Honey Bees for Environmental Monitoring. J. Hazard. Mater. 2022, 432, 128614. [Google Scholar] [CrossRef]
- Grenier, É.; Giovenazzo, P.; Julien, C.; Goupil-Sormany, I. Honeybees as a Biomonitoring Species to Assess Environmental Airborne Pollution in Different Socioeconomic City Districts. Environ. Monit. Assess. 2021, 193, 740. [Google Scholar] [CrossRef] [PubMed]
- ARPA UMBRIA. Monitoraggio in Discreto Delle Acque Sotterranee: Risultati Della Campagna Primavera 2017. Available online: https://apps.arpa.umbria.it/acqua/contenuto/Report-pubblicazioni-acque-sotterranee. (accessed on 1 March 2023).
- Conti, M.E.; Botrè, F. Honeybees and Their Products as Potential Bioindicators of Heavy Metals Contamination. Environ. Monit. Assess. 2001, 69, 267–282. [Google Scholar] [CrossRef] [PubMed]
- Giglio, A.; Ammendola, A.; Battistella, S.; Naccarato, A.; Pallavicini, A.; Simeon, E.; Tagarelli, A.; Giulianini, P.G. Apis mellifera ligustica, Spinola 1806 as Bioindicator for Detecting Environmental Contamination: A Preliminary Study of Heavy Metal Pollution in Trieste, Italy. Environ. Sci. Pollut. Res. 2017, 24, 659–665. [Google Scholar] [CrossRef]
- Roman, A. Levels of Copper, Selenium, Lead, and Cadmium in Forager Bees. Pol. J. Environ. Stud. 2010, 19, 663–669. [Google Scholar]
- Zarić, N.M.; Ilijević, K.; Stanisavljević, L.; Gržetić, I. Metal Concentrations around Thermal Power Plants, Rural and Urban Areas Using Honeybees (Apis mellifera L.) as Bioindicators. Int. J. Environ. Sci. Technol. 2016, 13, 413–422. [Google Scholar] [CrossRef] [Green Version]
- Fakhimzadeh, K.; Lodenius, M. Heavy Metals in Finnish Honey, Pollen and Honey Bees. APIACTA 2000, 35, 85–95. [Google Scholar]
- Zaric, N.M.; Deljanin, I.; Ilijević, K.; Stanisavljević, L.; Ristić, M.; Gržetić, I. Assessment of Spatial and Temporal Variations in Trace Element Concentrations Using Honeybees (Apis mellifera) as Bioindicators. PeerJ 2018, 6, e5197. [Google Scholar] [CrossRef] [Green Version]
- Toth, T.; Kopernicka, M.; Sabo, R.; Kopernicka, T. The Evaluation of Mercury in Honey Bees and Their Products from Eastern Slovakia. Sci. Pap. 2016, 49, 257–260. [Google Scholar]
- Sturchio, E.; Casorri, L.; Masciarelli, E.; Bemporad, E.; Mercurio, G.; Masotti, A.; Minoia, C.; Bianchi, F.; Napolitano, P.; Beni, C.; et al. ARSENICO: Contaminazione ed Esposizione Ambientale; INAIL: Rome, Italy, 2010. [Google Scholar]
- Loukola-Ruskeeniemi, K.; Kantola, M.; Halonen, T.; Seppänen, K.; Henttonen, P.; Kallio, E.; Kurki, P.; Savolainen, H. Mercury-Bearing Black Shales and Human Hg Intake in Eastern Finland: Impact and Mechanisms. Environ. Geol. 2003, 43, 283–297. [Google Scholar] [CrossRef]
- Piras, P.; Bella, A.; Cossu, M.; Fiori, G.; Sanna, A.; Chessa, G. A Representative Sampling of Tuna Muscle for Mercury Control. Ital. J. Food Saf. 2020, 9, 9055. [Google Scholar] [CrossRef]
- Bradley, M.; Barst, B.; Basu, N. A Review of Mercury Bioavailability in Humans and Fish. Int. J. Environ. Res. Public Health 2017, 14, 20169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Almeida Rodrigues, P.; Ferrari, R.G.; Dos Santos, L.N.; Conte Junior, C.A. Mercury in Aquatic Fauna Contamination: A Systematic Review on Its Dynamics and Potential Health Risks. J. Environ. Sci. 2019, 84, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Selvaggi, R.; Pallottini, M.; Caldaroni, B.; Dörr, A.J.M.; Magara, G.; Gravina, P.; Grispoldi, L.; Cenci-Goga, B.; Goretti, E.; La Porta, G.; et al. Sex and Seasonal Differences in Metal Accumulation of Selected Tissues in Red Swamp Crayfish from Lake Trasimeno (Umbria, Italy). Environ. Sci. Pollut. Res. 2022, 30, 6234–6244. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.; Byeon, E.; Kim, D.-H.; Maszczyk, P.; Lee, J.-S. Heavy metals and metalloid in aquatic invertebrates: A review of single/mixed forms, combination with other pollutants, and environmental factors. Mar. Pollut. Bull. 2023, 191, 114959. [Google Scholar] [CrossRef] [PubMed]
- Simon, O.; Ribeyre, F.; Boudou, A. Comparative experimental study of cadmium and methylmercury trophic transfers between the asiatic clam Corbicula fluminea and the crayfish Astacus astacus. Arch. Environ. Contam. Toxicol. 2000, 38, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Stinson, M.D.; Eaton, D.L. Concentrations of lead, cadmium, mercury, and copper in the crayfish (Pacifastacus leniusculus) obtained from a lake receiving urban runoff. Arch. Environ. Contam. Toxicol. 1983, 12, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Buckland-Nicks, A.; Hillier, K.N.; Avery, T.S.; O’driscoll, N.J. Mercury bioaccumulation in dragonflies (Odonata: Anisoptera): Examination of life stages and body regions. Environ. Toxicol. Chem. 2014, 33, 2047–2054. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Shi, L.; Wang, M. Comparative quantitative proteomics unveils putative mechanisms involved into mercury toxicity and tolerance in Tigriopus japonicus under multigenerational exposure scenario. Environ. Pollut. 2016, 218, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
(a) Alviano Lake | ||||||||||||
mg kg−1 | BODY (B) | GASTER (G) | BODY without GASTER (B−G) | |||||||||
<0.001 | Be | Ag | Be | Ag | ||||||||
0.0008 | 0.0008 | 0.0002 | 0.0009 | |||||||||
0.001–0.01 | Ga | Tl | Hg | Cs | Ag | Be | Hg | Ga | Ga | Cs | Cd | Tl |
0.003 | 0.005 | 0.006 | 0.007 | 0.002 | 0.002 | 0.007 | 0.009 | 0.001 | 0.002 | 0.003 | 0.004 | |
V | Hg | Co | ||||||||||
0.006 | 0.006 | 0.009 | ||||||||||
0.01–0.1 | V | Cr | Cd | Pb | Tl | Cs | Cr | V | Cr | Pb | Ni | Ba |
0.023 | 0.026 | 0.028 | 0.050 | 0.011 | 0.020 | 0.056 | 0.064 | 0.010 | 0.014 | 0.035 | 0.058 | |
Co | Li | As | Cd | Sr | Li | |||||||
0.092 | 0.094 | 0.077 | 0.084 | 0.070 | 0.095 | |||||||
0.1–1 | As | Ni | Li | Pb | Ni | Co | As | |||||
0.105 | 0.120 | 0.107 | 0.182 | 0.265 | 0.269 | 0.130 | ||||||
1–10 | Ba | Sr | Rb | B | Ba | Rb | Sr | Mn | B | Al | Rb | |
1.51 | 2.33 | 4.20 | 6.97 | 5.08 | 6.87 | 7.52 | 2.05 | 2.61 | 2.79 | 3.32 | ||
Cu | Si | |||||||||||
7.50 | 9.02 | |||||||||||
10–100 | Al | Cu | Si | Mn | B | Cu | Al | Si | Zn | Fe | ||
10.71 | 11.05 | 26.05 | 48.82 | 17.05 | 19.19 | 29.21 | 65.76 | 25.32 | 52.82 | |||
Zn | Fe | |||||||||||
51.85 | 77.82 | |||||||||||
100–1000 | Na | Mg | Ca | Zn | Fe | Mn | Na | Ca | Na | Mg | ||
319.60 | 455.41 | 494.26 | 117.12 | 149.08 | 154.78 | 432.11 | 197.08 | 295.37 | 422.60 | |||
Mg | ||||||||||||
589.69 | ||||||||||||
>1000 | S | P | K | Ca | S | P | K | S | P | K | ||
2625.77 | 4157.22 | 4407.09 | 1200.03 | 2153.56 | 5055.63 | 5598.33 | 3087.50 | 4055.21 | 4259.24 | |||
(b) Control Area (Perugia) | ||||||||||||
mg kg−1 | BODY (B) | GASTER (G) | BODY without GASTER (B−G) | |||||||||
<0.001 | Tl | Be | Tl | Be | Ag | Cs | ||||||
0.0004 | 0.0009 | 0.0002 | 0.0004 | 0.0005 | 0.0008 | |||||||
0.001–0.01 | Ag | Hg | Cs | Ga | Tl | Be | Hg | Ag | Ga | Hg | Cd | V |
0.001 | 0.002 | 0.003 | 0.005 | 0.001 | 0.002 | 0.004 | 0.005 | 0.001 | 0.002 | 0.004 | 0.007 | |
Cs | Co | |||||||||||
0.007 | 0.008 | |||||||||||
0.01–0.1 | As | Cr | V | Cd | Ga | As | V | Cr | Pb | Cr | As | Ni |
0.028 | 0.029 | 0.030 | 0.049 | 0.011 | 0.024 | 0.066 | 0.066 | 0.010 | 0.015 | 0.031 | 0.033 | |
Pb | Li | Co | Li | Sr | Ba | Li | ||||||
0.061 | 0.094 | 0.098 | 0.100 | 0.058 | 0.060 | 0.094 | ||||||
0.1–1 | Ni | Cd | Pb | Ni | Co | |||||||
0.158 | 0.160 | 0.190 | 0.243 | 0.308 | ||||||||
1–10 | Rb | Sr | Ba | B | Rb | Sr | Ba | Rb | Mn | Al | B | |
1.362 | 1.702 | 2.131 | 5.832 | 1.672 | 5.613 | 6.950 | 1.029 | 1.966 | 2.578 | 3.271 | ||
Cu | Si | |||||||||||
7.039 | 7.105 | |||||||||||
10–100 | Cu | Al | Si | Mn | B | Cu | Al | Si | Zn | Fe | ||
10.06 | 12.17 | 24.40 | 49.44 | 12.31 | 16.49 | 28.09 | 53.42 | 21.31 | 45.71 | |||
Zn | Fe | |||||||||||
58.40 | 73.06 | |||||||||||
100–1000 | Na | Mg | Ca | Zn | Fe | Mn | Na | Na | Ca | Mg | ||
223.14 | 356.17 | 580.03 | 132.24 | 136.97 | 149.25 | 273.46 | 220.66 | 231.79 | 323.49 | |||
Mg | ||||||||||||
431.15 | ||||||||||||
>1000 | S | P | K | Ca | S | K | P | S | P | K | ||
2323.33 | 3859.63 | 3964.07 | 1317.58 | 1875.13 | 4294.02 | 4565.84 | 2649.64 | 3675.06 | 3829.48 |
(a) Alviano Lake | ||||||||||
Ratio Gaster/Body without Gaster | (G/B−G) | |||||||||
<1 | As | S | ||||||||
0.60 | 0.70 | |||||||||
1–10 | Hg | Li | P | K | Mg | Na | Rb | Ag | Tl | Cu |
1.10 | 1.13 | 1.25 | 1.31 | 1.40 | 1.46 | 2.07 | 2.15 | 2.55 | 2.56 | |
Fe | Zn | Cr | Ca | B | Si | Ni | Ga | Cs | ||
2.82 | 4.63 | 5.55 | 6.09 | 6.53 | 7.29 | 7.61 | 7.85 | 9.91 | ||
10–100 | V | Al | Be | Pb | Cd | Co | Mn | Ba | ||
10.37 | 10.48 | 12.22 | 13.47 | 26.33 | 28.95 | 75.37 | 88.22 | |||
>100 | Sr | |||||||||
107.66 | ||||||||||
(b) Control Area (Perugia) | ||||||||||
Ratio gaster/body without gaster | (G/B−G) | |||||||||
<1 | S | As | ||||||||
0.71 | 0.75 | |||||||||
1–10 | Li | K | Na | P | Mg | Rb | Hg | Cu | Fe | Be |
1.07 | 1.12 | 1.25 | 1.25 | 1.34 | 1.65 | 1.91 | 2.34 | 2.93 | 3.60 | |
B | Tl | Ca | Zn | Si | Ni | Ga | Cr | Cs | V | |
3.80 | 4.70 | 5.65 | 6.21 | 7.56 | 7.79 | 7.89 | 8.18 | 8.61 | 9.39 | |
10–100 | Al | Ag | Pb | Co | Cd | Mn | ||||
11.18 | 14.76 | 19.91 | 35.59 | 41.76 | 77.73 | |||||
>100 | Sr | Ba | ||||||||
104.26 | 116.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goretti, E.; Pallottini, M.; La Porta, G.; Elia, A.C.; Gardi, T.; Petroselli, C.; Gravina, P.; Bruschi, F.; Selvaggi, R.; Cappelletti, D. Bioaccumulation of Trace Elements along the Body Longitudinal Axis in Honey Bees. Appl. Sci. 2023, 13, 6918. https://doi.org/10.3390/app13126918
Goretti E, Pallottini M, La Porta G, Elia AC, Gardi T, Petroselli C, Gravina P, Bruschi F, Selvaggi R, Cappelletti D. Bioaccumulation of Trace Elements along the Body Longitudinal Axis in Honey Bees. Applied Sciences. 2023; 13(12):6918. https://doi.org/10.3390/app13126918
Chicago/Turabian StyleGoretti, Enzo, Matteo Pallottini, Gianandrea La Porta, Antonia Concetta Elia, Tiziano Gardi, Chiara Petroselli, Paola Gravina, Federica Bruschi, Roberta Selvaggi, and David Cappelletti. 2023. "Bioaccumulation of Trace Elements along the Body Longitudinal Axis in Honey Bees" Applied Sciences 13, no. 12: 6918. https://doi.org/10.3390/app13126918
APA StyleGoretti, E., Pallottini, M., La Porta, G., Elia, A. C., Gardi, T., Petroselli, C., Gravina, P., Bruschi, F., Selvaggi, R., & Cappelletti, D. (2023). Bioaccumulation of Trace Elements along the Body Longitudinal Axis in Honey Bees. Applied Sciences, 13(12), 6918. https://doi.org/10.3390/app13126918