Detecting SPIT Attacks in VoIP Networks Using Convolutional Autoencoders: A Deep Learning Approach
Abstract
:1. Introduction
2. Related Work
3. Proposed Approach
3.1. Feature Extraction
3.2. Autoencoder Reconstruction Error
3.3. Deep Convolutional Autoencoder (DCAE)
3.4. The Architecture
3.5. D1-DCAE Model
Autoencoder Model—Encoder |
Block 1 |
conv1 = ConvolutionalLayer (input, input_channels, 32, kernel_size = 3, stride = 1) |
relu1 = ReLU (conv1) |
pool1 = MaxPooling (relu1, filter_size = 2, stride = 2) |
Block 2 |
conv2 = ConvolutionalLayer (pool1, 32, 16, kernel_size = 3, stride = 1) |
relu2 = ReLU (conv2) |
pool2 = MaxPooling (relu2, filter_size = 2, stride = 2) |
Block 3 |
conv3 = ConvolutionalLayer (pool2, 16, 8, kernel_size = 3, stride = 1) |
relu3 = ReLU (conv3) |
Autoencoder Model—Decoder |
Block 3 (Mirror of the encoder) |
deconv3 = DeconvolutionalLayer (relu3, 8, 16, kernel_size = 3, stride = 1) |
deconv_relu3 = ReLU (deconv3) |
upsample2 = Upsampling (deconv_relu3, pool2, filter_size = 2, stride = 2) |
Block 2 (Mirror of the encoder) |
deconv2 = DeconvolutionalLayer (upsample2, 16, 32, kernel_size = 3, stride = 1) |
deconv_relu2 = ReLU (deconv2) |
upsample1 = Upsampling (deconv_relu2, pool1, filter_size = 2, stride = 2) |
Block 1 (Mirror of the encoder) |
deconv1 = DeconvolutionalLayer (upsample1, 32, input_channels, kernel_size = 3, stride = 1) |
relu1_dec = ReLU (deconv1) |
Additional layers |
deconv_out = DeconvolutionalLayer(relu1_dec, 1, 1, kernel_size = 3, stride=2) |
dense = DenseLayer(deconv_out, input_length, 1) |
flatten = FlattenLayer(dense) |
output = flatten |
Anomaly Detection using Autoencoder Model |
threshold = predefined_threshold_value |
for each input_data in test_data: |
encoded_output = encoder(input_data) |
decoded_output = decoder(encoded_output) |
Calculate reconstruction loss (Mean Absolute Error) |
reconstruction_loss = mean_absolute_error (decoded_output, input_data) |
if reconstruction_loss > threshold: |
Anomaly detected |
Take appropriate action or record the anomaly |
else: |
Normal data |
4. Datasets
INVITE sip:[email protected] SIP/2.0 |
Via: SIP/2.0/UDP 193.169.2.15:5060;branch=z9hG4bK5287dad4 |
Max-Forwards: 70 |
From: “Your Best Friend” <sip:spitter3@[email protected]>;tag=as1d36c938 |
To: <sip:[email protected]> |
Contact: <sip:spitter3@[email protected]> |
Call-ID: [email protected] |
CSeq: 102 INVITE |
User-Agent: Asterisk PBX 1.6.2.0 rc2-0ubuntu1.2 |
Date: Mon, 01 Feb 2010 16:29:59 GMT |
Content-Type: application/sdp |
Content-Length: 323 |
v = 0 |
o = root 183860900 183860900 193.169.2.15 |
s = Asterisk PBX 1.6.2.0 rc2-0ubuntu1.2 |
c = IN IP4 193.169.2.15 |
t = 0 0 |
m = audio 13352 RTP/AVP 3 0 8 101 |
a = rtpmap:3 GSM/8000 |
a = rtpmap:0 PCMU/8000 |
a = rtpmap:8 PCMA/8000 |
a = fmtp:101 0-16 |
a = silenceSupp:off |
a = ptime:20 |
a = sendrecv |
INVITE sip:[email protected] SIP/2.0 |
Via: SIP/2.0/UDP 194.170.1.127:5060;branch=z9hG4bK12aeded1 |
Max-Forwards: 70 |
From: “from-extensions” <sip:[email protected]>;tag=as4b0f6d9c |
To: <sip:[email protected];transport=udp> |
Contact: <sip:[email protected]:5060> |
Call-ID: [email protected]:5060 |
CSeq: 102 INVITE |
Date: Wed, 19 Aug 2020 09:44:18 GMT |
Content-Type: application/sdp |
Content-Length: 311 |
v = 0 |
o = root 245855357 245855357 194.170.1.127 |
s = Asterisk PBX 16.12.0 |
c = IN IP4 194.170.1.127 |
t = 0 0 |
m = audio 10942 RTP/AVP 0 8 9 3 101 |
a = rtpmap:0 PCMU/8000 |
a = rtpmap:8 PCMA/8000 |
a = rtpmap:9 G722/8000 |
a = rtpmap:3 GSM/8000 |
a = rtpmap:101 telephone-event/8000 |
a = fmtp:101 0-16 |
a = maxptime:150 |
a = sendrecv |
5. Experiments
5.1. Setup
5.2. Training of D1-DCAE Model
5.3. Performance Metrics
5.4. Reconstruction Error Threshold
5.5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacobson, V.; Frederick, R.; Casner, S.; Schulzrinne, H. RTP: A Transport Protocol for Real-Time Applications. IETF RFC 3550. 2003. Available online: https://www.researchgate.net/publication/246511581_RTP_A_Transport_Protocol_for_Real-time_Applications (accessed on 1 June 2023).
- Rosenberg, J. SIP: Session Initiation Protocol. IETF RFC 3261. 2002. Available online: https://www.researchgate.net/publication/2811784_SIP_Session_Initiation_Protocol (accessed on 1 June 2023).
- Inc, C. Cisco Annual Internet Report (2018–2023) White Paper. 2020. Available online: http://shorturl.at/ehou4 (accessed on 1 January 2023).
- Javed, I.T.; Toumi, K.; Alharbi, F.; Margaria, T.; Crespi, N. Detecting nuisance calls over internet telephony using caller reputation. Electronics 2021, 10, 353. [Google Scholar] [CrossRef]
- Azad, M.A.; Morla, R.; Salah, K. Systems and methods for SPIT detection in VoIP: Survey and future directions. Comput. Secur. 2018, 77, 1–20. [Google Scholar] [CrossRef]
- Schölkopf, B.; Platt, J.C.; Shawe-Taylor, J.; Smola, A.J.; Williamson, R.C. Estimating the support of a high-dimensional distribution. Neural Comput. 2001, 13, 1443–1471. [Google Scholar] [CrossRef] [PubMed]
- Cao, V.L.; Nicolau, M.; McDermott, J. One-class classification for anomaly detection with kernel density estimation and genetic programming. In Proceedings of the European Conference on Genetic Programming, Porto, Portugal, 30 March–1 April 2016; Springer: Cham, Switzerland, 2016; pp. 3–18. [Google Scholar]
- Ruff, L.; Kauffmann, J.R.; Vandermeulen, R.A.; Montavon, G.; Samek, W.; Kloft, M.; Dietterich, T.G.; Müller, K.R. A unifying review of deep and shallow anomaly detection. Proc. IEEE 2021, 109, 756–795. [Google Scholar] [CrossRef]
- Kramer, M.A. Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 1991, 7, 233–243. [Google Scholar] [CrossRef]
- Tian, Y.; Mirzabagheri, M.; Tirandazi, P.; Bamakan, S.M.H. A non-convex semi-supervised approach to opinion spam detection by ramp-one class SVM. Inf. Process. Manag. 2020, 57, 102381. [Google Scholar] [CrossRef]
- Tama, B.A.; Comuzzi, M.; Rhee, K.H. TSE-IDS: A two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 2019, 7, 94497–94507. [Google Scholar] [CrossRef]
- Azrour, M.; Farhaoui, Y.; Ouanan, M.; Guezzaz, A. SPIT detection in telephony over IP using K-means algorithm. Procedia Comput. Sci. 2019, 148, 542–551. [Google Scholar] [CrossRef]
- Swarnkar, M.; Hubballi, N. SpamDetector: Detecting spam callers in Voice over Internet Protocol with graph anomalies. Secur. Priv. 2019, 2, e54. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.A.; Alazab, M.; Riaz, F.; Arshad, J.; Abullah, T. Socioscope: I know who you are, a robo, human caller or service number. Future Gener. Comput. Syst. 2020, 105, 297–307. [Google Scholar] [CrossRef]
- Pereira, D.; Oliveira, R. Detection of Signaling Vulnerabilities in Session Initiation Protocol. In Proceedings of the Doctoral Conference on Computing, Electrical and Industrial Systems, Costa de Caparica, Portugal, 7–9 July 2019; Springer: Cham, Switzerland, 2021; pp. 209–217. [Google Scholar]
- Nassar, M.; State, R.; Festor, O. Labeled VoIP data-set for intrusion detection evaluation. In Proceedings of the Meeting of the European Network of Universities and Companies in Information and Communication Engineering, Trondheim, Norway, 28–30 June 2010; Springer: Cham, Switzerland, 2010; pp. 97–106. [Google Scholar]
- Pereira, D.; Oliveira, R. Detection of Abnormal SIP Signaling Patterns: A Deep Learning Comparison. Computers 2022, 11, 27. [Google Scholar] [CrossRef]
- LeCun, Y.; Kavukcuoglu, K.; Farabet, C. Convolutional networks and applications in vision. In Proceedings of the 2010 IEEE International Symposium on Circuits and Systems, IEEE, Paris, France, 30 May–2 June 2010; pp. 253–256. [Google Scholar]
- Nazih, W.; Hifny, Y.; Elkilani, W.S.; Dhahri, H.; Abdelkader, T. Countering ddos attacks in sip based voip networks using recurrent neural networks. Sensors 2020, 20, 5875. [Google Scholar] [CrossRef] [PubMed]
- Tas, I.M.; Baktir, S. A Novel Approach for Efficient Mitigation against the SIP-Based DRDoS Attack. Appl. Sci. 2023, 13, 1864. [Google Scholar] [CrossRef]
- Henry, A.; Gautam, S.; Khanna, S.; Rabie, K.; Shongwe, T.; Bhattacharya, P.; Sharma, B.; Chowdhury, S. Composition of Hybrid Deep Learning Model and Feature Optimization for Intrusion Detection System. Sensors 2023, 23, 890. [Google Scholar] [CrossRef]
- Kasongo, S.M. A deep learning technique for intrusion detection system using a Recurrent Neural Networks based framework. Comput. Commun. 2023, 199, 113–125. [Google Scholar] [CrossRef]
- Chaganti, R.; Suliman, W.; Ravi, V.; Dua, A. Deep Learning Approach for SDN-Enabled Intrusion Detection System in IoT Networks. Information 2023, 14, 41. [Google Scholar] [CrossRef]
- Nazih, W.; Hifny, Y.; Elkilani, W.; Abdelkader, T.; Faheem, H. Efficient Detection of Attacks in SIP Based VoIP Networks using Linear l1-SVM Classifier. Int. J. Comput. Commun. Control. 2019, 14, 518–529. [Google Scholar] [CrossRef] [Green Version]
- Mikolov, T.; Yih, W.t.; Zweig, G. Linguistic regularities in continuous space word representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Atlanta, GA, USA, 9–14 June 2013; pp. 746–751. [Google Scholar]
- Japkowicz, N.; Myers, C.; Gluck, M. A novelty detection approach to classification. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995; Volume 1, pp. 518–523. [Google Scholar]
- Hawkins, S.; He, H.; Williams, G.; Baxter, R. Outlier detection using replicator neural networks. In Proceedings of the International Conference on Data Warehousing and Knowledge Discovery, Aix-en-Provence, France, 4–6 September 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 170–180. [Google Scholar]
- Masci, J.; Meier, U.; Cireşan, D.; Schmidhuber, J. Stacked convolutional auto-encoders for hierarchical feature extraction. In Proceedings of the International Conference on Artificial Neural Networks, Espoo, Finland, 14–17 June 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 52–59. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010. [Google Scholar]
- Nazih, W.; Elkilani, W.S.; Dhahri, H.; Abdelkader, T. Survey of countering DoS/DDoS attacks on SIP based VoIP networks. Electronics 2020, 9, 1827. [Google Scholar] [CrossRef]
- Alvares, C.; Dinesh, D.; Alvi, S.; Gautam, T.; Hasib, M.; Raza, A. Dataset of attacks on a live enterprise VoIP network for machine learning based intrusion detection and prevention systems. Comput. Netw. 2021, 197, 108283. [Google Scholar] [CrossRef]
- Umer, M.F.; Sher, M.; Bi, Y. A two-stage flow-based intrusion detection model for next-generation networks. PLoS ONE 2018, 13, e0180945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Sardinia, Italy, 13–15 May 2010; pp. 249–256. [Google Scholar]
- Tufan, E.; Tezcan, C.; Acartürk, C. Anomaly-based intrusion detection by machine learning: A case study on probing attacks to an institutional network. IEEE Access 2021, 9, 50078–50092. [Google Scholar] [CrossRef]
- Weiss, G.; He, H.; Ma, Y. Foundations of Imbalanced Learning. Imbalanced Learning: Foundations, Algorithms, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 2012, 6, 1–39. [Google Scholar] [CrossRef]
- Kemmler, M.; Rodner, E.; Wacker, E.S.; Denzler, J. One-class classification with Gaussian processes. Pattern Recognit. 2013, 46, 3507–3518. [Google Scholar] [CrossRef]
Dataset | F1 Score | AUC |
---|---|---|
INRIA | 99.32% | 99.25% |
RIT | 99.56% | 99.18% |
Approach | Accuracy | F1 Score | Precision | Recall | AUC | FPR |
---|---|---|---|---|---|---|
D1-DCAE | 99.07% | 99.32% | 99.87% | 98.77% | 99.25% | 1.226 |
GMM [40] | 81.29% | 87.43% | 81.53% | 94.24% | 73.32% | 5.756 |
OC-SVM [6] | 85.66% | 90.52% | 83.26% | 99.17% | 80.12% | 0.862 |
KDE [7] | 86.78% | 91.05% | 85.51% | 97.35% | 80.29% | 2.653 |
Isolation Forest [39] | 82.05% | 87.39% | 84.86% | 90.07% | 86.58% | 9.935 |
Note: The highest value in each metric is in bold. |
Approach | Accuracy | F1 Score | Precision | Recall | AUC | FPR |
---|---|---|---|---|---|---|
D1-DCAE | 99.42% | 99.56% | 99.23% | 99.90% | 99.18% | 0.1 |
GMM [40] | 90.08% | 93.08% | 87.05% | 100.00% | 85.13% | 0.0 |
OC-SVM [6] | 97.90% | 98.44% | 97.71% | 99.18% | 99.49% | 0.825 |
KDE [7] | 91.12% | 93.75% | 88.24% | 100.00% | 88.24% | 0.0 |
Isolation Forest [39] | 98.00% | 98.48% | 99.97% | 97.03% | 99.72% | 2.975 |
Note: The highest value in each metric is in bold. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazih, W.; Alnowaiser, K.; Eldesouky, E.; Youssef Atallah, O. Detecting SPIT Attacks in VoIP Networks Using Convolutional Autoencoders: A Deep Learning Approach. Appl. Sci. 2023, 13, 6974. https://doi.org/10.3390/app13126974
Nazih W, Alnowaiser K, Eldesouky E, Youssef Atallah O. Detecting SPIT Attacks in VoIP Networks Using Convolutional Autoencoders: A Deep Learning Approach. Applied Sciences. 2023; 13(12):6974. https://doi.org/10.3390/app13126974
Chicago/Turabian StyleNazih, Waleed, Khaled Alnowaiser, Esraa Eldesouky, and Osama Youssef Atallah. 2023. "Detecting SPIT Attacks in VoIP Networks Using Convolutional Autoencoders: A Deep Learning Approach" Applied Sciences 13, no. 12: 6974. https://doi.org/10.3390/app13126974
APA StyleNazih, W., Alnowaiser, K., Eldesouky, E., & Youssef Atallah, O. (2023). Detecting SPIT Attacks in VoIP Networks Using Convolutional Autoencoders: A Deep Learning Approach. Applied Sciences, 13(12), 6974. https://doi.org/10.3390/app13126974