Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Design and Search Strategy
2.3. Data Collection and Study Quality Assessment
2.4. Risk of Bias Assessment
3. Results
4. Discussion
- Manufacturing technologies
- Laser sintering
- Milling
- Stereolithography
- Other technologies
- -
- improved patient cooperation and comfort
- -
- decreased chair-side and laboratory time
- -
- enhanced precision
- -
- enhanced efficacy and effectiveness
- Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tsolakis, I.A.; Gizani, S.; Panayi, N.; Antonopoulos, G.; Tsolakis, A.I. Three-Dimensional Printing Technology in Orthodontics for Dental Models: A Systematic Review. Children 2022, 9, 1106. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.P.; Dourado, P.H.N.; de Araújo, C.A.R.; No-Cortes, J.; Pinhata-Baptista, O.H. Digital workflow to produce esthetic space maintainers for growing patients. J. Prosthet. Dent. 2022, 2022, S0022-3913. [Google Scholar] [CrossRef] [PubMed]
- Dursun, E.; Costa, A.M.-D.; Moussally, C. Chairside CAD/CAM Composite Onlays for the Restoration Of Primary Molars. J. Clin. Pediatr. Dent. 2018, 42, 349–354. [Google Scholar] [CrossRef]
- Dhanotra, K.G.; Bhatia, R. Digitainers-Digital Space Maintainers: A Review. Int. J. Clin. Pediatr. Dent. 2021, 14 (Suppl. 1), S69–S75. [Google Scholar] [CrossRef] [PubMed]
- Jheon, A.H.; Oberoi, S.; Solem, R.C.; Kapila, S. Moving towards precision orthodontics: An evolving paradigm shift in the planning and delivery of customized orthodontic therapy. Orthod. Craniofac. Res. 2017, 20 (Suppl. 1), 106–113. [Google Scholar] [CrossRef] [PubMed]
- Barbería, E.; Lucavechi, T.; Cárdenas, D.; Maroto, M. Free-end space maintainers: Design, utilization and advantages. J. Clin. Pediatr. Dent. 2006, 31, 5–8. [Google Scholar] [CrossRef]
- Nadelman, P.; Magno, M.B.; Pithon, M.M.; Castro, A.C.R.; Maia, L.C. Does the premature loss of primary anterior teeth cause morphological, functional and psychosocial consequences? Braz. Oral Res. 2021, 35, e092. [Google Scholar] [CrossRef]
- Uribe, F.; Meiers, J.C.; Nanda, R. Fixed retention of congenitally missing maxillary lateral incisors using a chairside, prefabricated fiber-reinforced composite bridge. World J. Orthod. 2008, 9, 349–354. [Google Scholar]
- Dogan, M.C.; Dogan, S.K.; Kendi, E. Complications of pediatric denture misuse: A case report. Oral Health Prev Dent. 2005, 3, 127–130. [Google Scholar]
- Watt, E.; Ahmad, A.; Adamji, R.; Katsimpali, A.; Ashley, P.; Noar, J. Space maintainers in the primary and mixed dentition-a clinical guide. Br. Dent. J. 2018, 225, 293–298, Erratum in: Br. Dent. J. 2018, 225, 555. [Google Scholar] [CrossRef]
- Vij, A.A.; Reddy, A. Using digital impressions to fabricate space maintainers: A case report. Clin. Case Rep. 2020, 8, 1274–1276. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, C.P.; Ehrenfeld, M. The Use of MMF Screws: Surgical Technique, Indications, Contraindications, and Common Problems in Review of the Literature. Craniomaxillofac Trauma Reconstr. 2010, 3, 55–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fathian, M.; Kennedy, D.B.; Nouri, M.R. Laboratory-made space maintainers: A 7-year retrospective study from private pediatric dental practice. Pediatr Dent. 2007, 29, 500–506. [Google Scholar]
- American Academy of Pediatric Dentistry. Management of the developing dentition and occlusion in pediatric dentistry. The reference manual of pediatric dentistry. Chic. Ill Am. Acad. Pediatr. Dent. 2020, 33, 393–409. [Google Scholar]
- Law, C.S. Management of premature primary tooth loss in the child patient. J. Calif. Dent. Assoc. 2013, 41, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, Y.; Zhao, Y.; Liu, H. Computer-aided design of polyetheretherketone for application to removable pediatric space maintainers. BMC Oral Health. 2020, 20, 201. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Grover, J.; Panthri, P. Space maintenance with an innovative “tube and loop” space maintainer (Nikhil appliance). Int. J. Clin. Pediatr. Dent. 2016, 9, 86. [Google Scholar]
- Kawara, M.; Komiyama, O.; Kimoto, S.; Kobayashi, N.; Kobayashi, K.; Nemoto, K. Distortion behavior of heat-activated acrylic denture-base resin in conventional and long, low-temperature processing methods. J. Dent. Res. 1998, 77, 1446–1453. [Google Scholar] [CrossRef]
- Krishnamurthy, D.M.; Singh, R.; Mistry, G. Interim three-dimensional printed overlay prosthesis for an adolescent patient with oligodontia. J. Indian Prosthodont. Soc. 2021, 21, 304–307. [Google Scholar] [CrossRef]
- Ahmad, A.J.; Parekh, S.; Ashley, P.F. Methods of space maintenance for premature loss of a primary molar: A review. Eur. Arch. Paediatr. Dent. 2018, 19, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Garg, A.; Samadi, F.; Jaiswal, J.N.; Saha, S. ‘Metal to resin’: A comparative evaluation of conventional band and loop space maintainer with the fiber reinforced composite resin space maintainer in children. J. Indian Soc. Pedod. Prev. Dent. 2014, 32, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.Z.; Kennedy, D.B. Space control in the primary and mixed dentitions. Dent. Clin. N. Am. 1978, 22, 579–601. [Google Scholar] [CrossRef]
- Laing, E.; Ashley, P.; Naini, F.B.; Gill, D.S. Space maintenance. Int. J. Paediatr. Dent. 2009, 19, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Kirzioğlu, Z.; Ertürk, M.S. Success of reinforced fiber material space maintainers. J. Dent. Child. 2004, 71, 158–162. [Google Scholar]
- Soni, H.K. Application of CAD-CAM for Fabrication of Metal-Free Band and Loop Space Maintainer. Clin. Diagn. Res. 2017, 11, ZD14–ZD16. [Google Scholar] [CrossRef]
- Hill, C.J.; Sorenson, H.W.; Mink, J.R. Space maintenance in a child dental care program. J. Am. Dent. Assoc. 1975, 90, 811–815. [Google Scholar] [CrossRef]
- Pawar, B.A. Maintenance of space by innovative three-dimensional-printed band and loop space maintainer. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 205–208. [Google Scholar] [CrossRef]
- Kargul, B.; Caglar, E.; Kabalay, U. Glass fiber reinforced composite resin space maintainer: Case reports. J. Dent. Child. 2003, 70, 258–261. [Google Scholar]
- Kargul, B.; Caglar, E.; Kabalay, U. Glass fiber-reinforced composite resin as fixed space maintainers in children: 12-month clinical follow-up. J. Dent. Child. 2005, 72, 109–112. [Google Scholar]
- Mittal, S.; Sharma, A.; Sharma, A.K.; Gupta, K.K.; Gaur, A.; Pathania, V. Banded versus Single-sided bonded space maintainers: A Comparative Study. J. Dent. Sci. 2018, 10, 29–36. [Google Scholar]
- Subramaniam, P.; Babu, G.; Sunny, R. Glass fiber-reinforced composite resin as a space maintainer: A clinical study. J. Indian Soc. Pedod. Prev. Dent. 2008, 26 (Suppl. 3), S98–S103. [Google Scholar] [PubMed]
- Tuloglu, N.; Bayrak, S.; Tunc, E.S. Different clinical applications of bondable reinforcement ribbond in pediatric dentistry. Eur. J. Dent. 2009, 3, 329–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ierardo, G.; Luzzi, V.; Lesti, M.; Vozza, I.; Brugnoletti, O.; Polimeni, A.; Bossù, M. Peek polymer in orthodontics: A pilot study on children. J. Clin. Exp. Dent. 2017, 9, e1271–e1275. [Google Scholar] [CrossRef] [PubMed]
- Zarean, P.; Zarean, P.; Thieringer, F.M.; Mueller, A.A.; Kressmann, S.; Erismann, M.; Sharma, N.; Benitez, B.K. A Point-of-Care Digital Workflow for 3D Printed Passive Presurgical Orthopedic Plates in Cleft Care. Children 2022, 9, 1261. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, C.; Madhuri, G.; Sharma, N.; Ranjan, S.; Ade, S.; Pusa, D. Glimpse of 3D printing in dentistry: A review. J. Adv. Med. Dent. Scie Res. 2021, 9, 127–130. [Google Scholar]
- Vasudavan, S.; Sullivan, S.R.; Sonis, A.L. Comparison of intraoral 3D scanning and conventional impressions for fabrication of orthodontic retainers. J. Clin. Orthod. 2010, 44, 495–497. [Google Scholar]
- Yilmaz, H.; Aydin, M.N. Digital versus conventional impression method in children: Comfort, preference and time. Int. J. Paediatr. Dent. 2019, 29, 728–735. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tokuc, M.; Yilmaz, H. Comparison of fit accuracy between conventional and CAD/CAM-fabricated band-loop space maintainers. Int. J. Paediatr. Dent. 2022, 32, 764–771. [Google Scholar] [CrossRef]
- Khanna, S.; Rao, D.; Panwar, S.; Pawar, B.A.; Ameen, S. 3D Printed Band and Loop Space Maintainer: A Digital Game Changer in Preventive Orthodontics. J. Clin. Pediatr. Dent. 2021, 45, 147–151. [Google Scholar] [CrossRef]
- Lee, J.H. Fully digital workflow for the fabrication of a tooth-colored space maintainer for a young patient. J. Esthet. Restor. Dent. 2022, 35, 561–566. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Feng, S.; Liu, H. Laser Medical Image Reconstruction and Computer Aided Design of Polymethyl Methacrylate for Pediatric Removable Space Maintainer Applications. J. Med. Imaging Health Inform. 2020, 10, 2842–2848. [Google Scholar] [CrossRef]
- Mondal, K.; Tripathy, P.K. Preparation of Smart Materials by Additive Manufacturing Technologies: A Review. Materials 2021, 14, 6442. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Nahar, P.; Ali, H.M. Current perspectives of 3D printing in dental applications. Braz. Dent. Sci. 2021, 24, 1–9. [Google Scholar] [CrossRef]
- Oberoi, G.; Nitsch, S.; Edelmayer, M.; Janjić, K.; Müller, A.S.; Agis, H. 3D Printing-Encompassing the Facets of Dentistry. Front. Bioeng. Biotechnol. 2018, 6, 172. [Google Scholar] [CrossRef] [Green Version]
- Zandinejad, A.; Khanlar, L.N.; Barmak, A.B.; Ikeda, M.; Tagami, J.; Masri, R. Shear bond strength of porcelain to milled and stereolithography additively manufactured zirconia with and without surface treatment: An in vitro study. J. Prosthet. Dent. 2023, in press. [CrossRef]
- Revilla-León, M.; Gómez-Polo, M.; Park, S.H.; Barmak, A.B.; Özcan, M. Adhesion of veneering porcelain to cobalt-chromium dental alloys processed with casting, milling, and additive manufacturing methods: A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 128, 575–588. [Google Scholar] [CrossRef]
- Hegedus, T.; Kreuter, P.; Kismarczi-Antalffy, A.A.; Demeter, T.; Banyai, D.; Vegh, A.; Geczi, Z.; Hermann, P.; Payer, M.; Zsembery, A.; et al. User Experience and Sustainability of 3D Printing in Dentistry. Int. J. Environ. Res. Public Health 2022, 19, 1921. [Google Scholar] [CrossRef]
- Huang, S.; Wei, H.; Li, D. Additive manufacturing technologies in the oral implant clinic: A review of current applications and progress. Front. Bioeng. Biotechnol. 2023, 11, 1100155. [Google Scholar] [CrossRef]
- Revilla-León, M.; Sadeghpour, M.; Özcan, M. A Review of the Applications of Additive Manufacturing Technologies Used to Fabricate Metals in Implant Dentistry. J. Prosthodont. 2020, 29, 579–593. [Google Scholar] [CrossRef]
- Lee, S. Prospect for 3D printing technology in medical, dental and pediatric dental field. J. Korean Acad. Pediatr. Dent. 2016, 43, 93–108. [Google Scholar] [CrossRef]
- Byakodi, J. Application of 3D printing in dentistry-review. Eur. J. Pharm. Med. Res. 2019, 6, 139–141. [Google Scholar]
- Jindal, P.; Juneja, M.; Siena, F.L.; Bajaj, D.; Breedon, P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am. J. Orthod. Dentofac. Orthop. 2019, 156, 694–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagib, R.; Szuhanek, C.; Moldoveanu, B.; Negrutiu, M.L.; Sinescu, C.; Brad, S. Custom designed orthodontic attachment manufactured using a biocompatible 3D printing material. Mater. Plast. 2017, 54, 757–758. [Google Scholar] [CrossRef]
- Al-Halabi, M.N.; Bshara, N.; Nassar, J.A.; Comisi, J.C.; Rizk, C.K. Clinical Performance of Two Types of Primary Molar Indirect Crowns Fabricated by 3D Printer and CAD/CAM for Rehabilitation of Large Carious Primary Molars. Eur. J. Dent. 2021, 15, 463–468. [Google Scholar] [CrossRef]
- Pillai, S.; Upadhyay, A.; Khayambashi, P.; Farooq, I.; Sabri, H.; Tarar, M.; Lee, K.T.; Harb, I.; Zhou, S.; Wang, Y.; et al. Dental 3D-Printing: Transferring Art from the Laboratories to the Clinics. Polymers 2021, 13, 157. [Google Scholar] [CrossRef]
- Du, Y.; Yang, D.; Pang, Y.; Liu, C.; Zhang, K. Application of CAD and 3D printing in the treatment of pediatric multiple mandible fractures: A case report. Med. Case Rep. Study Protoc. 2021, 2, e0095. [Google Scholar] [CrossRef]
- Dupret-Bories, A.; Vergez, S.; Meresse, T.; Brouillet, F.; Bertrand, G. Contribution of 3D printing to mandibular reconstruction after cancer. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2018, 135, 133–136. [Google Scholar] [CrossRef]
- Lee, A.Y.; Patel, N.A.; Kurtz, K.; Edelman, M.; Koral, K.; Kamdar, D.; Goldstein, T. The use of 3D printing in shared decision making for a juvenile aggressive ossifying fibroma in a pediatric patient. Am. J. Otolaryngol. 2019, 40, 779–782. [Google Scholar] [CrossRef]
- Dong, Z.; Li, Q.; Bai, S.; Zhang, L. Application of 3-Dimensional Printing Technology to Kirschner Wire Fixation of Adolescent Condyle Fracture. J. Oral Maxillofac. Surg. 2015, 73, 1970–1976. [Google Scholar] [CrossRef]
- Chakravarthy, C.; Gupta, N.C.; Patil, R. A Simplified Digital Workflow for the Treatment of Pediatric Mandibular Fractures Using Three-Dimensional (3D) Printed Cap Splint: A Case Report. Craniomaxillofacial Trauma Reconstr. Open 2019, 3, e67–e70. [Google Scholar] [CrossRef]
- Obregon, F.; Vaquette, C.; Ivanovski, S.; Hutmacher, D.W.; Bertassoni, L.E. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J. Dent. Res. 2015, 94 (Suppl. 9), 143S–152S. [Google Scholar] [CrossRef]
- Tibbits, S. 4D printing: Multi-material shape change. Archit Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Kessler, A.; Hickel, R.; Reymus, M. 3D Printing in Dentistry-State of the Art. Oper. Dent. 2020, 45, 30–40. [Google Scholar] [CrossRef]
- Schweiger, J.; Edelhoff, D.; Güth, J.-F. 3D Printing in Digital Prosthetic Dentistry: An Overview of Recent Developments in Additive Manufacturing. J. Clin. Med. 2021, 10, 2010. [Google Scholar] [CrossRef] [PubMed]
- Dolabdjian, H.; Strietzel, R. Method of Manufacture of Dental Prostheses and Auxiliary Elements. European Patent Application 1 021 997 B2, 26 July 2000. (In German). [Google Scholar]
- Kumar, S. Selective laser sintering: A qualitative and objective approach. JOM 2003, 55, 43–47. [Google Scholar] [CrossRef]
- Venkatesh, K.V.; Nandini, V.V. Direct metal laser sintering: A digitised metal casting technology. J. Indian Prosthodont Soc. 2013, 13, 389–392. [Google Scholar] [CrossRef] [PubMed]
- Zarean, P.; Malgaroli, P.; Zarean, P.; Seiler, D.; de Wild, M.; Thieringer, F.M.; Sharma, N. Effect of Printing Parameters on Mechanical Performance of Material-Extrusion 3D-Printed PEEK Specimens at the Point-of-Care. Appl. Sci. 2023, 13, 1230. [Google Scholar] [CrossRef]
- Verma, S.; Sharma, N.; Kango, S.; Sharma, S. Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. Eur. Polym. J. 2021, 147, 110295. [Google Scholar] [CrossRef]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef]
- Zoidis, P.; Papathanasiou, I.; Polyzois, G. The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses. A Clinical Report. J. Prosthodont. 2016, 25, 580–584. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Fang, Y.; Liao, Y.; Chen, G.; Gao, C.; Zhu, P. 3D printing and digital processing techniques in dentistry: A review of literature. Adv. Eng. Mater. 2019, 21, 1801013. [Google Scholar] [CrossRef]
- Mcomie, M. Aesthetic Long-Span Bridge Using BruxZir. Dental Tribune Middle East & Africa Edition; September–October. Available online: https://www.yumpu.com/en/document/read/50868219/esthetic-long-span-bridgeusing-bruxzir (accessed on 27 May 2023).
# | Medline | Results |
---|---|---|
1 | (“computer aided design”[MeSH Terms]) OR (“3d print*“[Title/Abstract]) OR (“three dimensional print*”[Title/Abstract]) OR (“computer aided design*”[Title/Abstract]) OR (“computer assisted design*”[Title/Abstract]) OR (“computer aided manufacturing”[Title/Abstract]) OR (“computer assisted manufacturing”[Title/Abstract]) OR (“CAD-CAM”[Title/Abstract]) OR (Digital Technology [MeSH Terms]) OR (Digital Technology [Title/Abstract]) OR (CAD/CAM [Title/Abstract]) OR (additive manufacturing [Title/Abstract]) OR (rapid prototyping [Title/Abstract]) OR (computer aided modeling [Title/Abstract]) | 55,251 |
2 | “pediatric dentist*”[MeSH Terms] OR “Pedodontics”[Title/Abstract] OR “pediatric dentist*”[Title/Abstract] OR “dental care for children”[MeSH Terms] OR “dental care for children”[Title/Abstract] OR “dentistry for children”[Title/Abstract] OR “pediatrics”[MeSH Terms] OR “pediatrics”[Title/Abstract] OR (paediatric dentist* [Title/Abstract]) OR (paediatric* [Title/Abstract]) OR (orthodontic* [Title/Abstract]) OR (Orthodontics, Preventive [MeSH Terms]) OR (Preventive Orthodontics [Title/Abstract]) | 229,474 |
3 | “space maintenance, orthodontic”[MeSH Terms]) OR (“orthodontic space maintenance*”[Title/Abstract]) OR (“space maintenance*”[Title/Abstract]) OR (“space maintainer*”[Title/Abstract]) OR (space retainer* [Title/Abstract]) OR (orthodontic space retainer* [Title/Abstract]) OR (“band and loop”[Title/Abstract]) OR (“band and loop space maintainer*”[Title/Abstract]) OR (band loop [Title/Abstract]) | 1096 |
#1 AND #2 AND #3 | 8 | |
Embase | ||
1 | ‘computer aided design/computer aided manufacturing’/de OR ‘computer aided design/computer aided manufacturing’/exp OR ‘computer aided design/computer aided manufacturing’:ab,ti OR ‘computer aided design’/exp OR ‘computer aided design’/de OR ‘computer aided design’:ab,ti OR ‘computer aided manufacture*’:ab,ti OR ‘computer assisted manufactur*’:ab,ti OR ‘computer assisted design*’:ab,ti OR ‘three dimensional printing’/de OR ‘three dimensional print*’:ab,ti OR ‘3 dimensional print*’:ab,ti OR ‘3D print*’:ab,ti OR ‘CAD/CAM software’/de OR ‘CAD/CAM software’:ab,ti OR ‘dental CAD/CAM system’/de OR ‘dental CAD/CAM system’:ab,ti OR ‘digital technology’/de OR ‘digital technology’:ab,ti OR ‘additive manufactur*’:ab,ti | 65,767 |
2 | ‘space maintenance*’:ab,ti OR ‘orthodontic space maintenance*’:ab,ti OR ‘space maintainer*’:ab,ti OR ‘space retainer*’:ab,ti OR ‘orthodontic space maintainer’/exp OR ‘orthodontic space maintainer’:ab,ti OR ‘orthodontic space retainer*’:ab,ti OR ‘band and loop’:ab,ti OR ‘band and loop space maintainer*’:ab,ti OR ‘preventive orthodontics’:ab,ti | 681 |
3 | ‘pediatric dentistry’/exp OR ‘pediatric dentistry’/de OR ‘pediatric dentist*’:ab,ti OR ‘pedodontics’:ab,ti OR ‘paediatric dentist*’:ab,ti OR ‘dental care for children’:ab,ti OR ‘dentistry for children’:ab,ti OR ‘orthodontic*’:ab,ti | 48,896 |
#1 AND #2 AND #3 | 6 | |
Web of Science | ||
1 | TS = (pediatric dentist*) OR TS = (Pedodontics) OR TS = (paediatric dentist*) OR TS = (dental care for children) OR TS = (dentistry for children) OR TS = (pediatric*) OR TS = (orthodontic*) OR TS = (Preventive Orthodontic*) | 326,793 |
2 | TS = (orthodontic space maintenance*) OR TS = (space maintenance*) OR TS=(space maintainer*) OR TS = (space retainer*) OR TS = (orthodontic space retainer*) OR TS = (band and loop) OR TS = (band and loop space maintainer*) | 22,275 |
3 | TS = (computer aided design*) OR TS = (3d print*) OR TS = (three dimensional print*) OR TS=(computer assisted design*) OR TS = (3 dimensional print*) OR TS = (computer aided manufacture*) OR TS = (computer assisted manufacture*) OR TS = (CAD-CAM) OR TS = (CAD/CAM) OR TS = (Digital Technology) OR TS = (additive manufacturing) OR TS = (rapid prototyping) OR TS = (computer aided model*) | 224,773 |
#1 AND #2 AND #3 | 8 |
Author, Year | Type of Study | Type of Intraoral Scanner | CAD Software | CAM Software/Manufacturing Method | Type/Material of Space Maintainer | Cementation | |
---|---|---|---|---|---|---|---|
1 | Rodrigues LP, et al., 2022 [2] | Technique report | TRIOS 3, 3Shape, Copenhagen, Denmark | DentalCAD, Exocad GmbH, Darmstadt, Germany | PrograMill CAM 4.1, Ivoclar; 5-axis milling device (CAM PM7, Ivoclar) | Esthetic space maintainers/PMMA | Glass ionomer cement (Riva Light Cure, SDI) |
2 | Tokuc M, et al., 2022 [39] | Original article | TRIOS 3 Cart, 3Shape, Copenhagen, Denmark | Appliance design software, 3Shape, Copenhagen, Denmark | HBD-100 metal 3D-printer (Shanghai Hanbang, China) | Band–loop space maintainers/titanium powder metallurgy | Low-viscosity condensation silicone material (Zhermack Oranwash, Badia, Italy) (in vitro visualization of cement space) |
3 | Pawar BA, et al., 2019 [27] | Case report | Medit T500, Medit Corp., Seongbuk-gu, Republic of Korea (cast was scanned) | DentalCAD 2.2 Valletta, Exocad GmbH, Darmstadt, Germany | Micro laser sintering technology; Form 2 3D-printer (Formlabs) | Band–loop/titanium powder metallurgy (Ti64 Gd23, LPW Technology, Cheshire, UK), and clear photopolymer resin (Formlabs, Somerville, MA, USA) | Glass ionomer cement (GC Fuji I, GC, Tokyo, Japan) |
4 | Khanna S, et al., 2021 [40] | Case report | Medit T500 3D digital dental scanner, Medit Corp., Seongbukgu, Republic of Korea (cast was scanned) | DentalCAD 2.2 Valletta, exocad, Darmstadt, Germany | Micro laser sintering technology | Band–loop space maintainers/titanium powder metallurgy (Ti64 Gd23, LPW Technology, Cheshire, UK) | Glass ionomer cement (GC Fuji I, GC, Tokyo, Japan) |
5 | Guo H, et al., 2020 [16] | Research article | D800 3D model scanner, 3Shape, Copenhagen, Denmark (cast was scanned) | Dental System 2017, 3Shape, Denmark, and Geomagic 2014 reverse engineering software, Geomagic, Morrisville, NC, USA | 5-axis numerical-control milling machine (Organical Multi, R + K CAD/CAM Technology, Germany) | Removable space maintainers/PEEK | - |
6 | Ierardo G, et al., 2017 [33] | Pilot study | D810 extraoral scanner, 3Shape, Copenhagen, Denmark (cast was scanned) | Dental Design software, 3Shape, Copenhagen, Denmark | 5-axis milling machine (Roland DWX-50) | PEEK polymer | CVI |
7 | Soni HK, et al., 2017 [25] | Case report | - | N/A | N/A | BruxZir zirconia | Resin luting cement (RelyX ARC, self-adhering flowable composite, 3M/ESPE) |
8 | Lee J, et al., 2022 [41] | Clinical article | TRIOS Color Cart; 3Shape, Copenha-gen, Copenhagen, Denmark | DentalSystem; 3Shape, Copenhagen, Denmark | 5-axis milling machine (Zenotecselect hybrid; Wieland Dental, Pforzheim, German) | Zirconia block (1100 Enamel; DENTALMAX, Seoul, Republic of Korea | adhesive resin cement (Panavia F 2.0; Kuraray Noritake Dental) |
9 | Guo H, et al., 2020 [42] | Research article | D800, 3Shape A/S, Copenhagen, Denmark (cast was scanned) | Dental System 2018, 3Shape A/S, produced in Copenhagen, Denmark and Geomagic Studio 2014, Geomagic Inc., Morrisville, NC, USA | Organical Multi, R + K GmBH, Germany | Removable space maintainers/PMMA | - |
Authors, Year | Advantages and Disadvantages | |
---|---|---|
1 | Rodrigues, et al. 2022 [2] |
|
2 | Tokuc, et al. 2022 [39] |
|
3 | Pawar, et al. 2019 [27] |
|
4 | Khanna, et al. 2019 [40] |
|
5 | Guo, et al. 2020 [16] |
|
6 | Ierardo, et al. 2017 [33] |
|
7 | Soni, et al. 2017 [25] |
|
8 | Lee J, et al. 2022 [41] |
|
9 | Guo H, et al. 2020 [42] |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarean, P.; Zarean, P.; Sendi, P.; Neuhaus, K.W. Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Appl. Sci. 2023, 13, 6998. https://doi.org/10.3390/app13126998
Zarean P, Zarean P, Sendi P, Neuhaus KW. Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Applied Sciences. 2023; 13(12):6998. https://doi.org/10.3390/app13126998
Chicago/Turabian StyleZarean, Paridokht, Parichehr Zarean, Pedram Sendi, and Klaus W. Neuhaus. 2023. "Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing" Applied Sciences 13, no. 12: 6998. https://doi.org/10.3390/app13126998
APA StyleZarean, P., Zarean, P., Sendi, P., & Neuhaus, K. W. (2023). Advances in the Manufacturing Process of Space Maintainers in Pediatric Dentistry: A Systematic Review from Traditional Methods to 3D-Printing. Applied Sciences, 13(12), 6998. https://doi.org/10.3390/app13126998