Solar Sail Orbit Raising with Electro-Optically Controlled Diffractive Film
Abstract
:1. Introduction
2. Mathematical Preliminaries
2.1. Thrust Vector Mathematical Model
2.2. Equations of Motion
2.3. Trajectory Optimization
3. Simulation Results
Case Study
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
diffractive sail film states | |
characteristic acceleration (mm/s ) | |
propulsive acceleration vector (mm/s ) | |
Hamiltonian function | |
part of that depends on the controls | |
grating momentum unit vector | |
radial unit vector | |
transverse unit vector | |
J | performance index (days) |
N | number of complete revolutions |
sail normal unit vector | |
O | Sun’s center of mass |
sail-fixed unit vector | |
r | Sun–spacecraft distance (au) |
spacecraft position vector (au) | |
reference distance () | |
t | time (days) |
polar reference frame | |
u | radial component of the spacecraft velocity (km/s) |
v | transverse component of the spacecraft velocity (km/s) |
spacecraft polar angle () | |
variable adjoint to r | |
variable adjoint to u | |
variable adjoint to v | |
variable adjoint to | |
Sun’s gravitational parameter (km /s ) | |
dimensionless control parameter | |
Subscripts | |
0 | initial, parking orbit |
f | final, target orbit |
♂ | Mars |
♀ | Venus |
Jupiter |
References
- Sawada, H.; Mori, O.; Okuizumi, N.; Shirasawa, Y.; Miyazaki, Y.; Natori, M.; Matunaga, S.; Furuya, H.; Sakamoto, H. Mission report on the solar power sail deployment demonstration of IKAROS. In Proceedings of the 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO, USA, 4–7 April 2011. [Google Scholar] [CrossRef]
- Tsuda, Y.; Mori, O.; Funase, R.; Sawada, H.; Yamamoto, T.; Saiki, T.; Endo, T.; Yonekura, K.; Hoshino, H.; Kawaguchi, J. Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut. 2013, 82, 183–188. [Google Scholar] [CrossRef]
- Mori, O.; Shirasawa, Y.; Mimasu, Y.; Tsuda, Y.; Sawada, H.; Saiki, T.; Yamamoto, T.; Yonekura, K.; Hoshino, H.; Kawaguchi, J.; et al. Overview of IKAROS Mission. In Advances in Solar Sailing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 25–43. [Google Scholar] [CrossRef]
- Montgomery, E.; Heaton, A.; Garbe, G. Places only solar sails can go. In Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years, Dayton, OH, USA, 14–17 July 2003. [Google Scholar] [CrossRef]
- Johnson, L.; Meyer, M.; Palaszewski, B.; Coote, D.; Goebel, D.; White, H. Development priorities for in-space propulsion technologies. Acta Astronaut. 2013, 82, 148–152. [Google Scholar] [CrossRef]
- Spencer, D.A.; Johnson, L.; Long, A.C. Solar sailing technology challenges. Aerosp. Sci. Technol. 2019, 93, 105276. [Google Scholar] [CrossRef]
- Fu, B.; Sperber, E.; Eke, F. Solar sail technology—A state of the art review. Prog. Aerosp. Sci. 2016, 86, 1–19. [Google Scholar] [CrossRef]
- Gong, S.; Macdonald, M. Review on solar sail technology. Astrodynamics 2019, 3, 93–125. [Google Scholar] [CrossRef]
- Heaton, A. Solar Sail GN&C Model Verification Including Flight Data. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, USA, 16–19 August 2004. [Google Scholar] [CrossRef]
- Thomas, S.; Paluszek, M.; Wie, B.; Murphy, D. Design and Simulation of Sailcraft Attitude Control Systems Using the Solar Sail Control Toolbox. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, RI, USA, 16–19 July 2004. [Google Scholar] [CrossRef] [Green Version]
- Thomas, S.; Paluszek, M.; Wie, B.; Murphy, D. AOCS Performance and Stability Validation for Large Flexible Solar Sail Spacecraft. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Tucson, AZ, USA, 10–13 July 2005. [Google Scholar] [CrossRef] [Green Version]
- Kun, Z. Control Capability and Allocation of Solar Sail Tip Vanes over Bounded Movement. J. Guid. Control Dyn. 2015, 38, 1340–1344. [Google Scholar] [CrossRef]
- Pezent, J.B.; Sood, R.; Heaton, A. Contingency target assessment, trajectory design, and analysis for NASA’s NEA Scout solar sail mission. Adv. Space Res. 2020, 67, 2890–2898. [Google Scholar] [CrossRef]
- Pezent, J.B.; Sood, R.; Heaton, A.; Miller, K.; Johnson, L. Preliminary trajectory design for NASA’s Solar Cruiser: A technology demonstration mission. Acta Astronaut. 2021, 183, 134–140. [Google Scholar] [CrossRef]
- Lockett, T.R.; Castillo-Rogez, J.; Johnson, L.; Matus, J.; Lightholder, J.; Marinan, A.; Few, A. Near-Earth Asteroid Scout flight mission. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 20–29. [Google Scholar] [CrossRef]
- Everett, J.; Heaton, A.; Houin, A.; Miller, K. An Integrated Software Architecture for Solar Cruiser Mission Design and Navigation. In Proceedings of the IEEE Aerospace Conference (AERO), Big Sky, MT, USA, 5–12 March 2022. [Google Scholar] [CrossRef]
- Herasimenka, A.; Dell’Elce, L.; Caillau, J.B.; Pomet, J.B. Controllability Properties of Solar Sails. J. Guid. Control Dyn. 2023, 46, 900–909. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Ikeuchi, D.; Fu, J.; Wu, X. Design and Simulation of a Flexible Bending Actuator for Solar Sail Attitude Control. Aerospace 2021, 8, 372. [Google Scholar] [CrossRef]
- Gong, H.; Gong, S.; Liu, D. Attitude dynamics and control of solar sail with multibody structure. Adv. Space Res. 2022, 69, 609–619. [Google Scholar] [CrossRef]
- Murphy, D.; Trautt, T. Solar Sail Propulsion Modeling. In Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, HI, USA, 23–26 April 2007. [Google Scholar] [CrossRef]
- Wie, B. Thrust Vector Control Analysis and Design for Solar-Sail Spacecraft. J. Spacecr. Rockets 2007, 44, 545–557. [Google Scholar] [CrossRef]
- Bassetto, M.; Quarta, A.A.; Caruso, A.; Mengali, G. Optimal heliocentric transfers of a Sun-facing heliogyro. Aerosp. Sci. Technol. 2021, 119, 107094. [Google Scholar] [CrossRef]
- Bassetto, M.; Quarta, A.A.; Mengali, G.; Cipolla, V. Trajectory analysis of a Sun-facing solar sail with optical degradation. J. Guid. Control Dyn. 2020, 43, 1727–1732. [Google Scholar] [CrossRef]
- Rios-Reyes, L.; Scheeres, D.J. Generalized Model for Solar Sails. J. Spacecr. Rockets 2005, 42, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Mengali, G.; Quarta, A.A. Optimal control laws for axially symmetric solar sails. J. Spacecr. Rockets 2005, 42, 1130–1133. [Google Scholar] [CrossRef]
- McInnes, C.R. Orbits in a generalized two-body problem. J. Guid. Control Dyn. 2003, 26, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.L. Space Sailing; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1992. [Google Scholar]
- McInnes, C.R. Solar Sailing: Technology, Dynamics and Mission Applications; Springer: Berlin/Heidelberg, Germany, 1999; pp. 171–196. [Google Scholar] [CrossRef]
- Mclnnes, C.R.; Simmons, J.F.L. Solar sail halo orbits. Part I—Heliocentric case. J. Spacecr. Rockets 1992, 29, 466–471. [Google Scholar] [CrossRef]
- McInnes, C.R.; Simmons, J.F.L. Solar Sail Halo Orbits Part II—Geocentric Case. J. Spacecr. Rockets 1992, 29, 472–479. [Google Scholar] [CrossRef]
- McInnes, C.R.; McDonald, A.J.C.; Simmons, J.F.L.; MacDonald, E.W. Solar sail parking in restricted three-body systems. J. Guid. Control Dyn. 1994, 17, 399–406. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G.; Bassetto, M.; Niccolai, L. Optimal circle-to-ellipse orbit transfer for Sun-facing E-sail. Aerospace 2022, 9, 671. [Google Scholar] [CrossRef]
- Colombo, C.; McInnes, C.R. Orbital dynamics of “Smart-Dust” devices with solar radiation pressure and drag. J. Guid. Control Dyn. 2011, 34, 1613–1631. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Yuan, J.; Su, X.; Shi, Y. A novel design and thermal analysis of micro solar sails for solar sailing with chip scale spacecraft. Microsyst. Technol. 2020, 27, 2615–2622. [Google Scholar] [CrossRef]
- Niccolai, L.; Bassetto, M.; Quarta, A.A.; Mengali, G. A review of Smart Dust architecture, dynamics, and mission applications. Prog. Aerosp. Sci. 2019, 106, 1–14. [Google Scholar] [CrossRef]
- Lücking, C.; Colombo, C.; McInnes, C.R. Electrochromic orbit control for smart-dust devices. J. Guid. Control Dyn. 2012, 35, 1548–1558. [Google Scholar] [CrossRef] [Green Version]
- Borggräfe, A.; Heiligers, J.; Ceriotti, M.; McInnes, C. Optical Control of Solar Sails using Distributed Reflectivity. In Proceedings of the Spacecraft Structures Conference, National Harbor, MD, USA, 13–17 January 2014. [Google Scholar] [CrossRef] [Green Version]
- Mu, J.; Gong, S.; Li, J. Coupled Control of Reflectivity Modulated Solar Sail for GeoSail Formation Flying. J. Guid. Control Dyn. 2015, 38, 740–751. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A.; Denti, E. Relative Motion of Sun-pointing Smart Dust in Circular Heliocentric Orbits. J. Guid. Control Dyn. 2018, 41, 1009–1014. [Google Scholar] [CrossRef]
- Ramnath, R.V. Heliogyro Spacecraft. In Multiple Scales Theory and Aerospace Applications; Schetz, J.A., Ed.; Education Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2010; Chapter 36; pp. 529–547. [Google Scholar] [CrossRef]
- Guerrant, D.; Lawrence, D. Tactics for Heliogyro Solar Sail Attitude Control via Blade Pitching. J. Guid. Control Dyn. 2015, 38, 1785–1799. [Google Scholar] [CrossRef]
- Heiligers, J.; Guerrant, D.; Lawrence, D. Exploring the Heliogyro’s Orbital Control Capabilities for Solar Sail Halo Orbits. J. Guid. Control Dyn. 2017, 40, 2569–2586. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, W.K.; Warren, J.E.; Horta, L.G.; Lyle, K.H.; Juang, J.N.; Littell, J.D.; Bryant, R.G.; Thomson, M.W.; Walkemeyer, P.E.; Guerrant, D.V.; et al. Heliogyro Solar Sail Research at NASA. In Advances in Solar Sailing; Springer: Berlin/Heidelberg, Germany, 2014; pp. 631–650. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Park, K.C. Flexible heliogyro solar sail under solar radiation pressure and gravitational force. Acta Astronaut. 2021, 179, 186–196. [Google Scholar] [CrossRef]
- Boni, L.; Bassetto, M.; Quarta, A.A.; Mengali, G. Nonlinear dynamics of flexible heliogyro subject to sinusoidal root pitch command. Aerosp. Sci. Technol. 2022, 130, 107920. [Google Scholar] [CrossRef]
- Swartzlander, G.A., Jr. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B Opt. Phys. 2017, 34, C25–C30. [Google Scholar] [CrossRef]
- Chu, L.J.; Swartzlander, G. Radiation pressure on a transmissive diffraction grating. In Proceedings of the Frontiers in Optics, Washington, DC, USA, 18–21 September 2017. [Google Scholar] [CrossRef]
- Swartzlander, G.A.J.; Chu, Y.J.; Srivastava, P. Beam riders and sailcraft based on diffractive light sails. In Proceedings of the Frontiers in Optics, Washington, DC, USA, 16–20 September 2018. [Google Scholar] [CrossRef]
- Chu, Y.J.; Jansson, E.M.; Swartzlander, G.A. Verification of radiation pressure on a diffraction grating. In Proceedings of the SPIE Nanoscience + Engineering, San Diego, CA, USA, 19–23 August 2018. [Google Scholar] [CrossRef]
- Swartzlander, G.A., Jr. Flying on a rainbow: A solar-driven diffractive sailcraft. JBIS J. Br. Interplanet. Soc. 2018, 71, 130–132. [Google Scholar]
- Srivastava, P.R.; Lucy Chu, Y.J.; Swartzlander, G.A., Jr. Stable diffractive beam rider. Opt. Lett. 2019, 44, 3082–3085. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Swartzlander, G.A., Jr. Optomechanics of a stable diffractive axicon light sail. Eur. Phys. J. Plus 2020, 135, 570. [Google Scholar] [CrossRef] [PubMed]
- Quarta, A.A.; Mengali, G.; Bassetto, M.; Niccolai, L. Optimal interplanetary trajectories for Sun-facing ideal diffractive sails. Astrodynamics 2023, in press.
- Dubill, A.L.; Swartzlander, G.A., Jr. Circumnavigating the Sun with diffractive solar sails. Acta Astronaut. 2021, 187, 190–195. [Google Scholar] [CrossRef]
- Davoyan, A.R.; Munday, J.N.; Tabiryan, N.; Swartzlander, G.A.; Johnson, L. Photonic materials for interstellar solar sailing. Optica 2021, 8, 722–734. [Google Scholar] [CrossRef]
- Matloff, G.L. Graphene: The Ultimate Interstellar Solar Sail Material? JBIS J. Br. Interplanet. Soc. 2012, 65, 378–381. [Google Scholar]
- Kislov, N. Variable Reflectance/Transmittance Coatings for Solar Sail Altitude Control and Three Axis Stabilization. In Proceedings of the AIP Conference Proceedings, Albuquerque, NM, USA, 8–11 February 2004. [Google Scholar] [CrossRef]
- McKay, R.J.; Macdonald, M.; Biggs, J.; McInnes, C. Survey of Highly Non-Keplerian Orbits with Low-Thrust Propulsion. J. Guid. Control Dyn. 2011, 34, 645–666. [Google Scholar] [CrossRef] [Green Version]
- Aliasi, G.; Mengali, G.; Quarta, A.A. Artificial Lagrange Points for Solar Sail with Electrochromic Material Panels. J. Guid. Control Dyn. 2013, 36, 1544–1550. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G.; Niccolai, L. Smart Dust Option for Geomagnetic Tail Exploration. Astrodynamics 2019, 3, 217–230. [Google Scholar] [CrossRef]
- Lappas, V.; Wie, B.; McInnes, C.; Tarabini, L.; Gomes, L.; Wallace, K. Microsolar Sails for Earth Magnetotail Monitoring. J. Spacecr. Rockets 2007, 44, 840–848. [Google Scholar] [CrossRef]
- Bryson, A.E.; Ho, Y.C. Applied Optimal Control; Hemisphere Publishing Corporation: New York, NY, USA, 1975; Chapter 2; pp. 71–89. ISBN 0-891-16228-3. [Google Scholar]
- Stengel, R.F. Optimal Control and Estimation; Dover Books on Mathematics; Dover Publications, Inc.: New York, NY, USA, 1994; pp. 222–254. [Google Scholar]
- Bate, R.R.; Mueller, D.D.; White, J.E. Fundamentals of Astrodynamics; Dover Publications: New York, NY, USA, 1971; Chapter 1; pp. 40–43. [Google Scholar]
- Shampine, L.F.; Reichelt, M.W. The MATLAB ODE Suite. SIAM J. Sci. Comput. 1997, 18, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Mengali, G.; Quarta, A.A. Optimal three-dimensional interplanetary rendezvous using nonideal solar sail. J. Guid. Control Dyn. 2005, 28, 173–177. [Google Scholar] [CrossRef]
Target Planet | Reflective Sail | Diffractive Sail | Variation |
---|---|---|---|
Venus (♀) | −8% | ||
Mars (♂) | −10% | ||
Jupiter () | −36% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, A.A.; Mengali, G. Solar Sail Orbit Raising with Electro-Optically Controlled Diffractive Film. Appl. Sci. 2023, 13, 7078. https://doi.org/10.3390/app13127078
Quarta AA, Mengali G. Solar Sail Orbit Raising with Electro-Optically Controlled Diffractive Film. Applied Sciences. 2023; 13(12):7078. https://doi.org/10.3390/app13127078
Chicago/Turabian StyleQuarta, Alessandro A., and Giovanni Mengali. 2023. "Solar Sail Orbit Raising with Electro-Optically Controlled Diffractive Film" Applied Sciences 13, no. 12: 7078. https://doi.org/10.3390/app13127078
APA StyleQuarta, A. A., & Mengali, G. (2023). Solar Sail Orbit Raising with Electro-Optically Controlled Diffractive Film. Applied Sciences, 13(12), 7078. https://doi.org/10.3390/app13127078