Optimal Buccal Site for Mini-Implant Placement on Attached Gingiva of Posterior Maxilla: A CBCT Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kanomi, R. Mini-implant for orthodontic anchorage. J. Clin. Orthod. 1997, 31, 763–767. [Google Scholar]
- Costa, A.; Raffaini, M.; Melsen, B. Miniscrews as orthodontic anchorage: A preliminary report. Int. J. Adult Orthod. Orthognath. Surg. 1998, 13, 201–209. [Google Scholar]
- Melsen, B.; Costa, A. Immediate loading of implants used for orthodontic anchorage. Clin. Orthod. Res. 2000, 3, 23–28. [Google Scholar] [CrossRef]
- Kyung, H.M.; Park, H.S.; Bae, S.M.; Sung, J.H.; Kim, I.B. Development of orthodontic micro-implants for intraoral anchorage. J. Clin. Orthod. 2003, 37, 321–328. [Google Scholar]
- Miyamoto, I.; Tsuboi, Y.; Wada, E.; Suwa, H.; Iizuka, T. Influence of cortical bone thickness and implant length on implant stability at the time of surgery-clinical, prospective, biomechanical, and imaging study. Bone 2005, 37, 776–780. [Google Scholar] [CrossRef]
- Wilmes, B.; Su, Y.-Y.; Drescher, D. Insertion Angle Impact on Primary Stability of Orthodontic Mini-Implants. Angle Orthod. 2008, 78, 1065–1070. [Google Scholar] [CrossRef]
- Wilmes, B.; Rademacher, C.; Olthoff, G.; Drescher, D. Parameters Affecting Primary Stability of Orthodontic Mini-implants. J. Orofac. Orthop. 2006, 67, 162–174. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, S.; Laval, J.Y.; Jäger, B.; Axmann, D.; Gomez-Roman, G.; Groten, M.; Weber, H. Resonance frequency analysis and damping capacity assessment. Part 2: Peri-implant bone loss follow-up. An in vitro study with the Periotest and Osstell instruments. Clin. Oral Implant. Res. 2006, 17, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-J.; Lee, S.-Y.; Wu, C.-C.; Lin, C.-T.; Abiko, Y.; Yamamichi, N.; Huang, H.-M. A Newly Designed Resonance Frequency Analysis Device for Dental Implant Stability Detection. Dent. Mater. J. 2007, 26, 665–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.-M.; Cheng, K.-Y.; Chen, C.-F.; Ou, K.-L.; Lin, C.-T.; Lee, S.-Y. Design of a stability-detecting device for dental implants. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2005, 219, 203–211. [Google Scholar] [CrossRef]
- Ostman, P.-O.; Hellman, M.; Wendelhag, I.; Sennerby, L. Resonance frequency analysis measurements of implants at placement surgery. Int. J. Prosthodont. 2006, 19, 77–83. [Google Scholar] [PubMed]
- Fuster-Torres, M.Á.; Peñarrocha-Diago, M.; Peñarrocha-Oltra, D.; Peñarrocha-Diago, M. Relationships between bone density values from cone beam computed tomography, maximum insertion torque, and resonance frequency analysis at implant placement: A pilot study. Int. J. Oral Maxillofac. Implant. 2011, 26, 1051–1056. [Google Scholar]
- Romanos, G.E.; Ciornei, G.; Jucan, A.; Malmstrom, H.; Gupta, B. In Vitro Assessment of Primary Stability of Straumann® Implant Designs. Clin. Implant. Dent. Relat. Res. 2014, 16, 89–95. [Google Scholar] [CrossRef]
- Hakim, S.G.; Glanz, J.; Ofer, M.; Steller, D.; Sieg, P. Correlation of cone beam CT-derived bone density parameters with primary implant stability assessed by peak insertion torque and periotest in the maxilla. J. Cranio-Maxillofac. Surg. 2019, 47, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Motoyoshi, M.; Inaba, M.; Ono, A.; Ueno, S.; Shimizu, N. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int. J. Oral Maxillofac. Surg. 2009, 38, 13–18. [Google Scholar] [CrossRef]
- Kravitz, N.D.; Kusnoto, B. Risks and complications of orthodontic miniscrews. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 43–51. [Google Scholar] [CrossRef]
- Pan, C.Y.; Liu, P.H.; Tseng, Y.C.; Chou, S.T.; Wu, C.Y.; Chang, H.P. Effects of cortical bone thickness and rabecular bone density on primary stability of orthodontic mini-implants. J. Dent. Sci. 2019, 14, 383–388. [Google Scholar] [CrossRef]
- Rozé, J.; Babu, S.; Saffazadeh, A.; Gayet-Delacroix, M.; Hoomaert, A.; Layrolle, P. Correlating implant stability to bone structure. Clin. Oral Implant. Res. 2009, 20, 1140–1145. [Google Scholar] [CrossRef]
- Mozzo, P.; Procacci, C.; Tacconi, A.; Martini, P.T.; Andreis, I.A.B. A new volumetric CT machine for dental imaging based on the cone-beam technique: Preliminary results. Eur. Radiol. 1998, 8, 1558–1564. [Google Scholar] [CrossRef]
- Leonardi, R. Cone-beam computed tomography and three-dimensional orthodontics. Where we are and future perspectives. J. Orthod. 2019, 46, 45–48. [Google Scholar] [CrossRef]
- Alqerban, A.; Jacobs, R.; Fieuws, S.; Willems, G. Comparison of two cone beam computed tomographic systems versus panoramic imaging for localization of impacted maxillary canines and detection of root resorption. Eur. J. Orthod. 2011, 33, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Kapila, S. Contemporary concepts on cone-beam computed to mography in orthodontics. In Cone Beam Computed Tomography in Orthodontics: Indications, Insights and Innovations; Kapila, S., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2014; pp. 5–42. [Google Scholar]
- Deguchi, T.; Nasu, M.; Murakami, K.; Yabuuchi, T.; Kamioka, H.; Takano-Yamamoto, T. Quantitative evaluation of cortical bone thickness with computed tomographic scan-ning for orthodontic implants. Am. J. Orthod. Dentofac. Orthop. 2006, 129, 721.e7–721.e12. [Google Scholar] [CrossRef]
- Rossi, M.; Bruno, G.; De Stefani, A.; Perri, A.; Gracco, A. Quantitative CBCT evaluation of maxillary and mandibular cortical bone thickness and density variability for ortho-dontic miniplate placement. Int. Orthod. 2017, 15, 610–624. [Google Scholar] [PubMed]
- Baumgaertel, S.; Hans, M.G. Buccal cortical bone thickness for mini-implant placement. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 230–235. [Google Scholar] [CrossRef]
- Ono, A.; Motoyoshi, M.; Shimizu, N. Cortical bone thickness in the buccal posterior region for orthodontic mini-implants. Int. J. Oral Maxillofac. Surg. 2008, 37, 334–340. [Google Scholar] [CrossRef]
- Yang, L.; Li, F.; Cao, M.; Chen, H.; Wang, X.; Chen, X.; Gao, W.; Petrone, J.F.; Ding, Y. Quantitative evaluation of maxillary interradicular bone with cone-beam computed tomography for bicortical placement of orthodontic mini-implants. Am. J. Orthod. Dentofac. Orthop. 2015, 147, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Fayed, M.M.S.; Pazera, P.; Katsaros, C. Optimal sites for orthodontic mini-implant placement assessed by cone beam computed tomography. Angle Orthod. 2010, 80, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Norton, M.R.; Gamble, C. Bone classification: An objective scale of bone density using the computerized tomography scan. Clin. Oral Implant. Res. 2001, 12, 79–84. [Google Scholar] [CrossRef]
- Turkyilmaz, I.; Tözüm, T.F.; Tumer, C. Bone density assessments of oral implant sites using computerized tomography. J. Oral Rehabil. 2007, 34, 267–272. [Google Scholar] [CrossRef]
- Aranyarachkul, P.; Caruso, J.; Gantes, B.; Schulz, E.; Riggs, M.; Dus, I.; Yamada, J.M.; Crigger, M. Bone density assessments of dental implant sites: 2. Quantitative cone-beam computerized tomography. Int. J. Oral Maxillofac. Implant. 2005, 20, 416–424. [Google Scholar]
- Hsu, J.-T.; Chang, H.-W.; Huang, H.-L.; Yu, J.-H.; Li, Y.-F.; Tu, M.-G. Bone density changes around teeth during orthodontic treatment. Clin. Oral Investig. 2011, 15, 511–519. [Google Scholar] [CrossRef]
- Salimov, F.; Tatli, U.; Kürkçü, M.; Akoğlan, M.; Oztunç, H.; Kurtoğlu, C. Evaluation of relationship between preoperative bone density values derived from cone beam computed tomography and implant stability parameters: A clinical study. Clin. Oral Implant. Res. 2013, 25, 1016–1021. [Google Scholar] [CrossRef]
- Felicori, S.M.; da Gama, R.D.S.; Queiroz, C.S.; Salgado, D.M.R.D.A.; Zambrana, J.R.M.; Giovani, É.M.; Costa, C. Assessment of Maxillary Bone Density by the Tomodensitometric Scale in Cone-Beam Computed Tomography (CBCT). J. Health Sci. Inst. 2015, 33, 319–322. [Google Scholar]
- Ahmed, M.; Ikram, Y.; Qureshi, F.; Sharjeel, M.; Khan, Z.A.; Ataullah, K. Assessment of jaw bone density in terms of Hounsfield units using cone beam computed tomography for dental implant treatment planning. Pak. Armed Forces Med. J. 2021, 71, 221–227. [Google Scholar] [CrossRef]
- Misch, C.E. Density of bone: Effect on treatment planning, surgical approach, and healing. In Proceedings of the Contemporary Implant Dentistry; Misch, C.E., Ed.; Year Book, Inc.: St. Louis, MO, USA, 1993; pp. 469–485. [Google Scholar]
- Baumgaertel, S. Hard and soft tissue considerations at mini-implant insertion sites. J. Orthod. 2014, 41 (Suppl. S1), s3–s7. [Google Scholar] [CrossRef] [PubMed]
- Fiorellini, J.P.; Kim, D.M.; Ishikawa, S.O. The gingiva. In Carranza’s Clinical Periodontology, 10th ed.; Newman, M.G., Takeim, H., Klokkevold, P.R., Carranza, F.A., Eds.; Saunders Publishers: St. Louis, MO, USA, 2006; pp. 46–47. [Google Scholar]
- Hilming, F.; Jervoe, P. Surgical extension of vestibular depth. On the results in various regions of the mouth in periodontal patients. Tandlaegebladet 1970, 74, 329–343. [Google Scholar] [PubMed]
- Bhatia, G.; Kumar, A.; Khatri, M.; Bansal, M.; Saxena, S. Assessment of the width of attached gingiva using different methods in various age groups: A clinical study. J. Indian Soc. Periodontol. 2015, 19, 199–202. [Google Scholar] [CrossRef]
- Guglielmoni, P.; Promsudthi, A.; Tatakis, D.N.; Trombelli, L. Intra- and Inter-Examiner Reproducibility in Keratinized Tissue Width Assessment with 3 Methods for Mucogingival Junction Determination. J. Periodontol. 2001, 72, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Hulley, S.B.; Cummings, S.R.; Browner, W.S.; Grady, D.; Newman, T.B. Designing Clinical Research: An Epidemiologic Approach, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; p. 79. [Google Scholar]
- Kim, H.-J.; Yun, H.-S.; Park, H.-D.; Kim, D.-H.; Park, Y.-C. Soft-tissue and cortical-bone thickness at orthodontic implant sites. Am. J. Orthod. Dentofac. Orthop. 2006, 130, 177–182. [Google Scholar] [CrossRef]
- Al-Hafidh, N.N.; Al-Khatib, A.R.; Al-Hafidh, N.N. Assessment of the cortical bone thickness by CT-scan and its association with orthodontic implant position in a young adult Eastern Mediterranean population: A cross sectional study. Int. Orthod. 2020, 18, 246–257. [Google Scholar] [CrossRef]
- Ozdemir, F.; Tozlu, M.; Germec-Cakan, D. Cortical bone thickness of the alveolar process measured with cone-beam computed tomography in patients with different facial types. Am. J. Orthod. Dentofac. Orthop. 2013, 143, 190–196. [Google Scholar] [CrossRef]
- Farnsworth, D.; Rossouw, P.E.; Ceen, R.F.; Buschang, P.H. Cortical bone thickness at common miniscrew implant placement sites. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 495–503. [Google Scholar] [CrossRef]
- Cassetta, M.; Sofan, A.A.; Altieri, F.; Barbato, E. Evaluation of alveolar cortical bone thickness and density for orthodontic mini-implant placement. J. Clin. Exp. Dent. 2013, 5, e245–e252. [Google Scholar] [CrossRef] [Green Version]
- Morar, L.; Băciuț, G.; Băciuț, M.; Bran, S.; Colosi, H.; Manea, A.; Almășan, O.; Dinu, C. Analysis of CBCT Bone Density Using the Hounsfield Scale. Prosthesis 2022, 4, 414–423. [Google Scholar] [CrossRef]
- Van Giap, H.; Lee, J.Y.; Nguyen, H.; Chae, H.S.; Kim, Y.H.; Shin, J.W. Cone-beam computed tomography and digital model analysis of maxillary buccal alveolar bone thickness for vertical temporary skeletal anchorage device placement. Am. J. Orthod. Dentofac. Orthop. 2022, 161, e429–e438. [Google Scholar] [CrossRef] [PubMed]
- Tepedino, M.; Cattaneo, P.M.; Niu, X.; Cornelis, M.A. Interradicular sites and cortical bone thickness for miniscrew insertion: A systematic review with meta-analysis. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 783–798.e20. [Google Scholar] [CrossRef]
- Holmes, P.B.; Wolf, B.J.; Zhou, J. A CBCT atlas of buccal cortical bone thickness in interradicular spaces. Angle Orthod. 2015, 85, 911–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nackaerts, O.; Maes, F.; Yan, H.; Souza, P.C.; Pauwels, R.; Jacobs, R. Analysis of intensity variability in multislice and cone beam computed tomography. Clin. Oral Implant. Res. 2011, 22, 873–879. [Google Scholar] [CrossRef]
- José da Silva Campos, M.; Salgueiro de Souza, T.; Luiz Mota Júnior, S.; Reis Fraga, M.; Willer Farinazzo Vitral, R. Bone mineral density in cone beam computed tomography: Only a few shades of gray. World J. Radiol. 2014, 6, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zhao, W.; Wang, Y.; Yu, J.; Zou, D. Assessments of jaw bone density at implant sites using 3D cone-beam computed to-mography. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 1398–1403. [Google Scholar]
- Al-Hafidh, N.; Al-Khatib, A.R.; Al-Hafidh, N.N. Cortical bone thickness and density: Inter-relationship at different orthodontic implant positions. Clin. Investig. Orthod. 2022, 81, 20–27. [Google Scholar] [CrossRef]
Right Side | Left Side | ||||||||
---|---|---|---|---|---|---|---|---|---|
Gingival Height | Min | Max | Mean | SD | Min | Max | Mean | SD | |
Cortical thickness (mm) | Lower | 0.44 | 1.07 | 0.71 | 0.19 | 0.38 | 0.95 | 0.67 | 0.15 |
Middle | 0.53 | 1.34 | 0.98 | 0.26 | 0.51 | 1.26 | 0.88 | 0.23 | |
Upper | 0.61 | 1.63 | 1.1 | 0.32 | 0.54 | 1.43 | 0.99 | 0.23 | |
Cortical density (HU) | Lower | 586 | 1877 | 1155.75 | 386.72 | 618 | 1550 | 995.85 | 238.05 |
Middle | 567 | 1896 | 1250.40 | 372.52 | 737 | 1853 | 1171.20 | 260.55 | |
Upper | 692 | 2044 | 1395.10 | 414.80 | 821 | 2234 | 1224.30 | 342.37 | |
Trabecular density (HU) | Lower | 152 | 1364 | 615.25 | 357.17 | 160 | 1576 | 604.10 | 299.69 |
Middle | 285 | 1636 | 732.95 | 174.29 | 61 | 1195 | 510.95 | 300.92 | |
Upper | 41 | 1779 | 689.35 | 420.12 | 44 | 1299 | 590.25 | 372.49 |
Cortical Bone Density | ||
---|---|---|
Right Side/p-Value | Left Side/p-Value | |
Cortical bone thickness | 0.018 | 0.001 |
Gingival Height | ||||
---|---|---|---|---|
Right Side | Left Side | |||
Eta Value | Association | Eta Value | Association | |
Cortical bone thickness | 0.490 | medium | 0.526 | medium |
Cortical bone density | 0.251 | weak | 0.353 | weak |
Trabecular bone density | 0.129 | no | 0.136 | no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasoglou, G.; Apostolopoulos, K.; Vasoglou, M. Optimal Buccal Site for Mini-Implant Placement on Attached Gingiva of Posterior Maxilla: A CBCT Study. Appl. Sci. 2023, 13, 7099. https://doi.org/10.3390/app13127099
Vasoglou G, Apostolopoulos K, Vasoglou M. Optimal Buccal Site for Mini-Implant Placement on Attached Gingiva of Posterior Maxilla: A CBCT Study. Applied Sciences. 2023; 13(12):7099. https://doi.org/10.3390/app13127099
Chicago/Turabian StyleVasoglou, Georgios, Konstantinos Apostolopoulos, and Michail Vasoglou. 2023. "Optimal Buccal Site for Mini-Implant Placement on Attached Gingiva of Posterior Maxilla: A CBCT Study" Applied Sciences 13, no. 12: 7099. https://doi.org/10.3390/app13127099
APA StyleVasoglou, G., Apostolopoulos, K., & Vasoglou, M. (2023). Optimal Buccal Site for Mini-Implant Placement on Attached Gingiva of Posterior Maxilla: A CBCT Study. Applied Sciences, 13(12), 7099. https://doi.org/10.3390/app13127099