The Use of Construction Waste to Remediate a Thermally Active Spoil Heap
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Mining Site
2.2. Sampling and Pre-Analytical Steps
2.3. Calculations and Instrumental Conditions
- w
- —mass moisture content in %,
- m1
- —original sample weight in g,
- m2
- —sample weight after drying in g.
- s
- —dry matter in %,
- w
- —mass moisture content in %.
- Ha
- —hydrolytic acidity in mmol kg−1,
- a
- —consumption of NaOH during titration in mL,
- f
- —factor 0.1 M NaOH,
- c
- NaOH—concentration of NaOH,
- 1000
- —conversion to 1 kg of soil,
- K
- —correction to sodium acetate,
- g
- —weight of soil in g.
2.3.1. Sequential Extraction Analysis (SEA)
2.3.2. Analytical Methods
3. Results and Discussion
3.1. Mineralogical-Petrographic Characteristics of Tailings
3.2. Chemical Composition of Tailings
3.3. Chemical Composition of Construction and Demolition Waste
3.4. Acidification of Tailings
3.5. Sequential Extraction Analysis
3.5.1. Aluminium
3.5.2. Iron
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilson, G. Pollution Prevention and Cleaner Production in the Mining Industry: An Analysis of Current Issues. J. Clean. Prod. 2000, 8, 119–126. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin. Land 2021, 10, 23. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, H.; Yin, P.; Wu, L.; Li, G. Landscape Ecological Quality Assessment and Its Dynamic Change in Coal Mining Area: A Case Study of Peixian. Environ. Earth Sci. 2019, 78, 708. [Google Scholar] [CrossRef]
- de Fátima Ulbrich, K.; de Campos, C.E.M. Obtaining of Hematite from Industrial Steel Waste Using Dry-Milling and High Temperature. Clean. Eng. Technol. 2021, 5, 100327. [Google Scholar] [CrossRef]
- Bondarenko, V.; Kovalevs’ka, I.; Illiashov, M.; Pivnyak, G. (Eds.) Geomechanical Processes during Underground Mining: School of Underground Mining 2012; CRC Press: London, UK, 2012; ISBN 978-0-429-21674-9. [Google Scholar]
- Mi, J.; Yang, Y.; Zhang, S.; An, S.; Hou, H.; Hua, Y.; Chen, F. Tracking the Land Use/Land Cover Change in an Area with Underground Mining and Reforestation via Continuous Landsat Classification. Remote Sens. 2019, 11, 1719. [Google Scholar] [CrossRef] [Green Version]
- Jelínek, P.; Marschalko, M.; Lamich, D.; Yilmaz, I.; Zastěrová, P.; Bednárik, M.; Heviánková, S.; Kyncl, M.; Drusa, M.; Růčková, H. Monitoring and Analysis of Burning in Coal Tailing Dumps: A Case Study from the Czech Republic. Environ. Earth Sci. 2015, 73, 6601–6612. [Google Scholar] [CrossRef]
- Różański, Z. Fire Hazard in Coal Waste Dumps—Selected Aspects of the Environmental Impact. IOP Conf. Ser. Earth Environ. Sci. 2018, 174, 012013. [Google Scholar] [CrossRef] [Green Version]
- Establishing a Sustainable Mining Operation: An Overview-ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0959652610003471 (accessed on 14 February 2023).
- Hendrychová, M.; Svobodova, K.; Kabrna, M. Mine Reclamation Planning and Management: Integrating Natural Habitats into Post-Mining Land Use. Resour. Policy 2020, 69, 101882. [Google Scholar] [CrossRef]
- Hendrychová, M. Reclamation Success in Post-Mining Landscapes in the Czech Republic: A Review of Pedological and Biological Studies. J. Landsc. Stud. 2008, 1, 63–78. [Google Scholar]
- Prakash, A.; Fielding, E.J.; Gens, R.; Van Genderen, J.L.; Evans, D.L. Data Fusion for Investigating Land Subsidence and Coal Fire Hazards in a Coal Mining Area. Int. J. Remote Sens. 2001, 22, 921–932. [Google Scholar] [CrossRef]
- Demirel, N.; Düzgün, Ş.; Emil, M.K. Landuse Change Detection in a Surface Coal Mine Area Using Multi-Temporal High-Resolution Satellite Images. Int. J. Min. Reclam. Environ. 2011, 25, 342–349. [Google Scholar] [CrossRef]
- Ciesielczuk, J.; Czylok, A.; Fabiańska, M.J.; Misz-Kennan, M. Plant Occurrence on Burning Coal Waste–A Case Study from the Katowice-Wełnowiec Dump, Poland. Environ. Socio-Econ. Stud. 2015, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Popovych, V.; Petlovanyi, M.; Henyk, Y.; Popovych, N.; Bosak, P. Efficiency of Vegetative Reclamation of Coal Spoil Heaps. Ecol. Eng. Environ. Technol. 2022, 23, 172–177. [Google Scholar] [CrossRef]
- Dulias, R. Landscape Planning in Areas of Sand Extraction in the Silesian Upland, Poland. Landsc. Urban Plan. 2010, 95, 91–104. [Google Scholar] [CrossRef]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. (Eds.) Chapter 15—The Thermal History of Select Coal-Waste Dumps in the Upper Silesian Coal Basin, Poland. In Coal and Peat Fires: A Global Perspective; Elsevier: Boston, MA, USA, 2015; pp. 431–462. ISBN 978-0-444-59509-6. [Google Scholar]
- Zástěrová, P.; Marschalko, M.; Niemiec, D.; Durďák, J.; Bulko, R.; Vlček, J. Analysis of Possibilities of Reclamation Waste Dumps after Coal Mining. Procedia Earth Planet. Sci. 2015, 15, 656–662. [Google Scholar] [CrossRef] [Green Version]
- Home-Eurostat. Available online: https://ec.europa.eu/eurostat (accessed on 14 February 2023).
- Statistical Yearbook of the Czech Republic. Available online: https://www.czso.cz/csu/czso/statistical-yearbook-of-the-czech-republic-2022 (accessed on 14 February 2023).
- Communication From the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions towards a Circular Economy: A Zero Waste Programme for Europe; European Union: Brussels, Belgium, 2014.
- Mossop, K.F.; Davidson, C.M. Comparison of Original and Modified BCR Sequential Extraction Procedures for the Fractionation of Copper, Iron, Lead, Manganese and Zinc in Soils and Sediments. Anal. Chim. Acta 2003, 478, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Kiratli, N.; Ergin, M. Partitioning of Heavy Metals in Surface Black Sea Sediments. Appl. Geochem. 1996, 11, 775–788. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Huang, S.-J.; Chang, C.-Y.; Mui, D.T.; Chang, F.-C.; Lee, M.-Y.; Wang, C.-F. Sequential Extraction for Evaluating the Leaching Behavior of Selected Elements in Municipal Solid Waste Incineration Fly Ash. J. Hazard. Mater. 2007, 149, 180–188. [Google Scholar] [CrossRef]
- Usero, J.; Gamero, M.; Morillo, J.; Gracia, I. Comparative Study of Three Sequential Extraction Procedures for Metals in Marine Sediments. Environ. Int. 1998, 24, 487–496. [Google Scholar] [CrossRef]
- Lã, O.R.; Barra, C.M.; do Amaral Sobrinho, N.M.B.; Mazur, N.; Velloso, A.C.X. Avaliação dos métodos de extração sequencial de Tessier, Keller e Miller na determinação de ferro nativo em três tipos de solos: Orgânico, brunizem e latossolo. Quím. Nova 2003, 26, 323–330. [Google Scholar] [CrossRef]
- Papassiopi, N.; Kontoyianni, A.; Vaxevanidou, K.; Xenidis, A. Assessment of Chromium Biostabilization in Contaminated Soils Using Standard Leaching and Sequential Extraction Techniques. Sci. Total Environ. 2009, 407, 925–936. [Google Scholar] [CrossRef] [PubMed]
- Nemati, K.; Bakar, N.K.A.; Abas, M.R. Investigation of Heavy Metals Mobility in Shrimp Aquaculture Sludge—Comparison of Two Sequential Extraction Procedures. Microchem. J. 2009, 91, 227–231. [Google Scholar] [CrossRef]
- Nemati, K.; Abu Bakar, N.K.; Sobhanzadeh, E.; Abas, M.R. A Modification of the BCR Sequential Extraction Procedure to Investigate the Potential Mobility of Copper and Zinc in Shrimp Aquaculture Sludge. Microchem. J. 2009, 92, 165–169. [Google Scholar] [CrossRef]
- Giacomino, A.; Abollino, O.; Malandrino, M.; Mentasti, E. The Role of Chemometrics in Single and Sequential Extraction Assays: A Review. Part II. Cluster Analysis, Multiple Linear Regression, Mixture Resolution, Experimental Design and Other Techniques. Anal. Chim. Acta 2011, 688, 122–139. [Google Scholar] [CrossRef]
- Gholami, L.; Rahimi, G. Chemical Fractionation of Copper and Zinc after Addition of Carrot Pulp Biochar and Thiourea-Modified Biochar to a Contaminated Soil. Environ. Technol. 2021, 42, 3523–3532. [Google Scholar] [CrossRef]
- De Silveira Pereira, W.V.; Teixeira, R.A.; de Souza, E.S.; de Moraes, A.L.F.; Campos, W.E.O.; do Amarante, C.B.; Martins, G.C.; Fernandes, A.R. Chemical Fractionation and Bioaccessibility of Potentially Toxic Elements in Area of Artisanal Gold Mining in the Amazon. J. Environ. Manag. 2020, 267, 110644. [Google Scholar] [CrossRef] [PubMed]
- Fractionation of Lead in Lignite Coal Samples of Thar Coalfield, Pakistan by Time-saving Single-step Based on BCR Sequential Extraction Scheme-Lashari-2020-Environmental Progress & Sustainable Energy-Wiley Online Library. Available online: https://aiche.onlinelibrary.wiley.com/doi/10.1002/ep.13439 (accessed on 14 February 2023).
- Zdeb, M.; Pawłowska, M.; Pacan, J. The Influence of Anaerobic Digestion on Selected Heavy Metals Fractionation in Sewage Sludge. J. Ecol. Eng. 2020, 21, 27–35. [Google Scholar] [CrossRef]
- Raclavská; Matýsek; Škrobánková. Problémové Parametry Při Posuzování Vyuřitelnosti Hlušin v OKR. Uhlí Rudy Geol. Průzkum 2003, 51, 20–26. [Google Scholar]
- Zloch, J.; Adamcová, D.; Šindelář, O.; Šourková, M.; Vaverková, M.D.; Zloch, J.; Adamcová, D.; Šindelář, O.; Šourková, M.; Vaverková, M.D. Testing of Phytotoxicity of Mining Waste to Determine the Direction of Future Development. AIMS Environ. Sci. 2020, 7, 324–334. [Google Scholar] [CrossRef]
- Łupieżowiec, M.; Rybak, J.; Różański, Z.; Dobrzycki, P.; Jędrzejczyk, W. Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies 2022, 15, 5766. [Google Scholar] [CrossRef]
- Pešek, J. Major and Minor Elements in the Hard Coal from the Czech Upper Paleozoic Basins; Czech Geological Survey: Prague, Czech Republic, 2010; ISBN 978-80-7075-741-3. [Google Scholar]
- Daniels, W.; Stewart, B.; Zipper, C. Reclamation of Coal Refuse Disposal Areas; Virginia Tech: Blacksburg, VA, USA, 1995. [Google Scholar]
- Onwuka, M.I.; Ozurumba, U.V.; Nkwocha, O.S. Changes in Soil PH and Exchangeable Acidity of Selected Parent Materials as Influenced by Amendments in South East of Nigeria. J. Geosci. Environ. Prot. 2016, 4, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Soil Acidity. Available online: https://isbnsearch.org/isbn/9783642744440 (accessed on 21 February 2023).
- Handbook of Soil Acidity (Books in Soils, Plants & the Environment). Available online: https://isbnsearch.org/isbn/9780824708900 (accessed on 21 February 2023).
- The Meaning of Metal Toxicity in Soil-Plant Systems. In Toxic Metals in Soil Plant Systems; Wiley: Hoboken, NJ, USA, 1994; pp. 27–61.
- Wenzel, W.W.; Blum, W.E.H. Fluorine Speciation and Mobility in F-Contaminated Soils. Soil Sci. 1992, 153, 357–364. [Google Scholar] [CrossRef]
- Heavy Metals Testing in Soil Alloway. Available online: https://www.alloway.com/features/heavy-metals-testing-soil (accessed on 14 February 2023).
- ISBN 9781420093681-Trace Elements in Soils and Plants. Available online: https://isbnsearch.org/isbn/9781420093681 (accessed on 14 February 2023).
- Komárek, M.; Chrastný, V.; Ettler, V.; Tlustos, P. Evaluation of Extraction/Digestion Techniques Used to Determine Lead Isotopic Composition in Forest Soils. Anal. Bioanal. Chem. 2006, 385, 1109–1115. [Google Scholar] [CrossRef]
- Thomson, E.A.; Luoma, S.N.; Cain, D.J.; Johansson, C. The Effect of Sample Storage on the Extraction of Cu, Zn, Fe, Mn and Organic Material from Oxidized Estuarine Sediments. Water Air Soil Pollut. 1980, 14, 215–233. [Google Scholar] [CrossRef]
- Quevauviller, P.; Rauret, G.; Muntau, H.; Ure, A.M.; Rubio, R.; López-Sánchez, J.F.; Fiedler, H.D.; Griepink, B. Evaluation of a Sequential Extraction Procedure for the Determination of Extractable Trace Metal Contents in Sediments. Fresenius J. Anal. Chem. 1994, 349, 808–814. [Google Scholar] [CrossRef]
- Kersten, M.; Förstner, U. Effect of Sample Pretreatment on the Reliability of Solid Speciation Data of Heavy Metals—Implications Sesfor the Study of Early Diagenetic Processes. Mar. Chem. 1987, 22, 299–312. [Google Scholar] [CrossRef]
- Pueyo, M.; Rauret, G.; Lück, D.; Yli-Halla, M.; Muntau, H.; Quevauviller, P.; López-Sánchez, J.F. Certification of the Extractable Contents of Cd, Cr, Cu, Ni, Pb and Zn in a Freshwater Sediment Following a Collaboratively Tested and Optimised Three-Step Sequential Extraction Procedure. J. Environ. Monit. 2001, 3, 243–250. [Google Scholar] [CrossRef]
- Salomons, W.; Förstner, U. Trace Metal Analysis on Polluted Sediments. Environ. Technol. 1980, 1, 506–517. [Google Scholar] [CrossRef]
- Tokalioglu, S.; Kartal, S.; Birol, G. Application of a Three-Stage Sequential Extraction Procedure for the Determination of Extractable Metal Contents in Highway Soils. Turk. J. Chem. 2003, 27, 333–346. [Google Scholar]
- Leleyter, L.; Baraud, F. Évaluation de la mobilité des métaux dans les sédiments fluviaux du bassin de la Vire (Normandie, France) par extractions simples ou séquentielles. Comptes Rendus Geosci. 2005, 337, 571–579. [Google Scholar] [CrossRef]
- Reid, M.K.; Spencer, K.L.; Shotbolt, L. An Appraisal of Microwave-Assisted Tessier and BCR Sequential Extraction Methods for the Analysis of Metals in Sediments and Soils. J. Soils Sediments 2011, 11, 518–528. [Google Scholar] [CrossRef]
- Krasnodębska-Ostręga, B.; Pałdyna, J.; Kowalska, J.; Jedynak, Ł.; Golimowski, J. Fractionation Study in Bioleached Metallurgy Wastes Using Six-Step Sequential Extraction. J. Hazard. Mater. 2009, 167, 128–135. [Google Scholar] [CrossRef]
- Bojórquez-Quintal, E.; Escalante-Magaña, C.; Echevarría-Machado, I.; Martínez-Estévez, M. Aluminum, a Friend or Foe of Higher Plants in Acid Soils. Front. Plant Sci. 2017, 8, 1767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, M.; Ahn, S.; Matsumoto, H. Inhibition of Growth and Development of Root Border Cells in Wheat by Al. Physiol. Plant. 2003, 117, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Rout, G.R.; Samantaray, S.; Das, P. Aluminium Toxicity in Plants: A Review. Agronomie 2001, 21, 3–21. [Google Scholar] [CrossRef]
- Rosseland, B.O.; Eldhuset, T.D.; Staurnes, M. Environmental Effects of Aluminium. Env. Geochem. Health 1990, 12, 17–27. [Google Scholar] [CrossRef]
- Chemical Equilibria in Soils. Available online: https://isbnsearch.org/isbn/9781930665118 (accessed on 21 February 2023).
- Gleyzes, C.; Tellier, S.; Astruc, M. Fractionation Studies of Trace Elements in Contaminated Soils and Sediments: A Review of Sequential Extraction Procedures. TrAC Trends Anal. Chem. 2002, 21, 451–467. [Google Scholar] [CrossRef]
- Fuentes, A.; Lloréns, M.; Sáez, J.; Soler, A.; Aguilar, M.I.; Ortuño, J.F.; Meseguer, V.F. Simple and Sequential Extractions of Heavy Metals from Different Sewage Sludges. Chemosphere 2004, 54, 1039–1047. [Google Scholar] [CrossRef]
- Rao, C.R.M.; Sahuquillo, A.; Lopez-Sanchez, J.F. Comparison of Single and Sequential Extraction Procedures for the Study of Rare Earth Elements Remobilisation in Different Types of Soils. Anal. Chim. Acta 2010, 662, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Pickering, W.F. Metal Ion Speciation—Soils and Sediments (A Review). Ore Geol. Rev. 1986, 1, 83–146. [Google Scholar] [CrossRef]
- Kheboian, C.; Bauer, C.F. Accuracy of Selective Extraction Procedures for Metal Speciation in Model Aquatic Sediments. Anal. Chem. 1987, 59, 1417–1423. [Google Scholar] [CrossRef]
- Van Herck, P.; Vandecasteele, C. Evaluation of the Use of a Sequential Extraction Procedure for the Characterization and Treatment of Metal Containing Solid Waste. Waste Manag. 2001, 21, 685–694. [Google Scholar] [CrossRef]
- CEP Consultants. Heavy Metals in the Environment: International Conference Heidelberg, September 1983; CEP Consultants: Melville, NY, USA, 1983; ISBN 978-0-905941-07-3. [Google Scholar]
- US EPA. Regional Screening Levels (RSLs). Available online: https://www.epa.gov/risk/regional-screening-levels-rsls (accessed on 21 February 2023).
Year | Total Production of Waste t | Production of Construction and Demolition Waste t | Share of Construction and Demolition Waste on the Total Production % |
---|---|---|---|
2014 | 32,028,422 | 19,124,592 | 59.7 |
2015 | 37,338,298 | 24,916,868 | 65.1 |
2016 | 34,242,076 | 20,669,215 | 60.4 |
2017 | 34,553,461 | 20,153,879 | 58.3 |
2018 | 37,940,560 | 21,498,561 | 56.7 |
2019 | 37,310,939 | 23,551,255 | 63.1 |
2020 | 38,486,186 | 24,955,252 | 64.8 |
Step | Isolated Fractions | Agent | Volume mL | Temperature °C | Time |
---|---|---|---|---|---|
1 | Exchangeable fraction and fraction bound to carbonates | 0.11M CH3COOH | 40 | 22 ± 2 | shaking 16 h |
2 | Fraction bound to Fe/Mn oxides and hydroxides (reducible fraction) | 0.1M NH2OH HCl acidified 2.0M HNO3 | 40 | 22 ± 2 | shaking 16 h |
3 | Fraction bound to organic matter and sulphides (oxidizable fraction) | 8.8M H2O2, pH = 2 1.0M NH4OAc, pH = 2 | 10 50 | 22 ± 2 85 ± 2 22 ± 2 | leaching 1 h leaching 1 h shaking 16 h |
Mineral | Formula | Wt |
---|---|---|
Quartz | SiO2 | 43 |
Muscovite | KAl2(AlSi3O10)(F,OH)2 | 19 |
Clinochlore | Mg3.75Fe2+1.25Si3Al2O10(OH)8 | 13 |
Albite | NaAlSi3O8 | 8 |
Potassium | K | 2 |
Feldspar | KAlSi3O8−CaAl2Si2O8 | 10.5 |
Minority | 4.5 |
% | Burnt Tailings | Tailings | % | Burnt Tailings | Tailings |
---|---|---|---|---|---|
Na | <0.01 | <0.01 | Mo | 0.0007 | 0.0011 |
Ag | <0.0002 | <0.0002 | Nb | 0.0066 | 0.0054 |
Al | 19.04 | 11.16 | Nd | 0.0313 | 0.0292 |
As | 0.001 | 0.020 | Ni | 0.03 | 0.03 |
Ba | 0.2815 | 0.678 | P | 0.19 | 0.30 |
Bi | <0.00010 | <0.00010 | Pb | 0.01142 | 0.0272 |
Br | 0.0006 | 0.0082 | Pr | 0.0066 | <0.00020 |
Ca | 1.99 | 0.68 | Rb | 0.0608 | 0.0543 |
Cd | 0.0017 | 0.00047 | S | 0.54 | 3.50 |
Ce | 0.0342 | 0.011 | Sb | 0.0021 | 0.00043 |
Cl | 0.01 | 0.49 | Se | <0.00005 | 0.0006 |
Co | 0.01 | 0.005 | Si | 48.09 | 26.70 |
Cr | 0.06 | 0.04 | Sn | 0.0036 | 0.00081 |
Cs | 0.0110 | 0.014 | Sr | 0.0388 | 0.0532 |
Cu | 0.02 | 0.03 | Ta | 0.0118 | 0.0115 |
Fe | 14.93 | 24.96 | Te | <0.00030 | <0.00030 |
Ga | 0.0091 | 0.0094 | Th | 0.0068 | 0.0082 |
Ge | 0.0005 | 0.0002 | Ti | 1.57 | 1.30 |
Hf | 0.0021 | 0.0021 | Tl | 0.00042 | 0.0004 |
Hg | <0.00010 | 0.0061 | U | 0.0018 | 0.0023 |
I | 0.0005 | 0.059 | V | 0.04 | 0.05 |
K | 7.93 | 5.53 | W | 0.0051 | 0.0019 |
La | 0.0140 | 0.012 | Y | 0.0110 | 0.0098 |
Mg | 1.98 | 0.20 | Zn | 0.05 | 0.05 |
Mn | 0.23 | 0.09 | Zr | 0.0898 | 0.0715 |
% | CDW | % | CDW |
---|---|---|---|
Na | <0.01 | Cu | 0.01 |
Te | <0.0003 | La | 0.022 |
Ag | 0.002 | Cl | <0.0002 |
Bi | <0.0001 | Ta | 0.02 |
Hg | <0.0001 | Pb | 0.008 |
Se | <0.00005 | Y | 0.008 |
Si | 45 | Cs | 0.01 |
Al | 8.5 | Co | 0.003 |
Fe | 8.0 | Ga | 0.005 |
K | 3.4 | Th | 0.003 |
Ca | 27 | Nb | 0.006 |
Mg | 0.82 | Pr | 0.0004 |
Ti | 1.09 | W | 0.0002 |
S | 0.53 | Sn | <0.0003 |
Ba | 0.17 | Hf | 0.006 |
Mn | 0.19 | Sb | <0.0003 |
P | 0.14 | U | 0.0002 |
Zr | 0.29 | Cd | <0.0002 |
Cr | 0.10 | As | 0.002 |
Rb | 0.02 | Mo | 0.001 |
Zn | 0.27 | Br | 0.0004 |
V | 0.03 | Ge | 0.0002 |
Sr | 0.05 | I | 0.0002 |
Ce | 0.02 | Tl | 0.0002 |
Nd | 0.02 | Cu | 0.01 |
Ni | 0.02 | La | 0.02 |
Sample Description | pH/H2O | pH/CaCl2 | Ha mmoL kg−1 |
---|---|---|---|
Tailings/CDW (ratio 9:1) | 6.1 | 6.5 | 54 |
Tailings/CDW (ratio 8:2) | 6.3 | 6.7 | 34 |
Tailings/CDW (ratio 7:3) | 6.5 | 6.9 | 21 |
Tailings | 3.7 | 3.4 | 205 |
Burning Tailings | 8.4 | 8.9 | 1.4 |
CDW | 10.7 | 10.4 | 0 |
Sample Description | Fraction I | Fraction II | Fraction III |
---|---|---|---|
Tailings/CDW (ratio 9:1) | 283 | 1026 | 401 |
Tailings/CDW (ratio 8:2) | 166 | 1139 | 389 |
Tailings/CDW (ratio 7:3) | 138 | 1397 | 368 |
Tailings | 790 | 719 | 493 |
CDW | 51 | 1757 | <0.6 |
Sample Description | Fraction I | Fraction II | Fraction III |
---|---|---|---|
Tailings/CDW (ratio 9:1) | 28 | 1492 | 1179 |
Tailings/CDW (ratio 8:2) | 36 | 1298 | 705 |
Tailings/CDW (ratio 7:3) | 67 | 1270 | 547 |
Tailings | 14 | 1393 | 2002 |
CDW | 77 | 1255 | <0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pertile, E.; Dvorský, T.; Václavík, V.; Syrová, L.; Charvát, J.; Máčalová, K.; Balcařík, L. The Use of Construction Waste to Remediate a Thermally Active Spoil Heap. Appl. Sci. 2023, 13, 7123. https://doi.org/10.3390/app13127123
Pertile E, Dvorský T, Václavík V, Syrová L, Charvát J, Máčalová K, Balcařík L. The Use of Construction Waste to Remediate a Thermally Active Spoil Heap. Applied Sciences. 2023; 13(12):7123. https://doi.org/10.3390/app13127123
Chicago/Turabian StylePertile, Eva, Tomáš Dvorský, Vojtěch Václavík, Lucie Syrová, Jakub Charvát, Kateřina Máčalová, and Lukáš Balcařík. 2023. "The Use of Construction Waste to Remediate a Thermally Active Spoil Heap" Applied Sciences 13, no. 12: 7123. https://doi.org/10.3390/app13127123
APA StylePertile, E., Dvorský, T., Václavík, V., Syrová, L., Charvát, J., Máčalová, K., & Balcařík, L. (2023). The Use of Construction Waste to Remediate a Thermally Active Spoil Heap. Applied Sciences, 13(12), 7123. https://doi.org/10.3390/app13127123