Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms
Abstract
:1. Introduction
2. Project Overview
3. Data Collection
4. Methods
4.1. Particle Swarm Optimization Algorithm
4.2. Least-Squares Support Vector Machine
4.3. Optimization of LSSVM by Particle Swarm Algorithm
4.4. Multi-Objective PSO Optimization
5. Modeling for Prediction and Optimization
5.1. PSO-LSSVM Model Building
5.2. Parameter Configuration of the Models Used for Comparison
5.3. Two-Objective Optimization Model
6. Results and Discussion
6.1. Comparison and Evaluation of Prediction Models
6.2. Optimization of Blast Design Parameters
7. Conclusions
- The PSO-LSSVM model outperformed GA-BP, unoptimized LSSVM, and BP in terms of the prediction efficiency and accuracy of PPV, with better prediction error (RMSE, MAE) and goodness of fit (r). More specifically, the hyperparameter-optimized PSO-LSSVM reduced the prediction error (RMSE, MAE) by more than 55% and improved the goodness of fit (r) by more than 10%, compared with the least-efficient one (unoptimized BP).
- With the multi-objective optimization function of PSO, a relatively optimal blasting design was found based on existing blasting tests. When considering the PPV of the sensitive area (R = 100 m, H = 90 m) and the Br, the blasting design parameters for Zhoushan mine were taken as W = 173.68 kg, PF = 0.38 kg/m3, S = 5.96 m, B = 3.19 m, and H0 = 1.91 m, corresponding to a PPV of 0.893 cm/s and Br of 9.8%. Therefore, it can provide engineers with a more specific and reliable blasting vibration control reference.
- In order to predict and control the PPV more accurately, more experimental data and influencing factors should be considered. Furthermore, reliable agent models are a requirement for more accurate multi-objective optimization results.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandelwal, M.; Singh, T.N. Prediction of blast-induced ground vibration using artifificial neural network. Int. J. Rock Mech. Min. Sci. 2009, 46, 1214–1222. [Google Scholar] [CrossRef]
- Zhu, Z.; Yin, Y.X.; Chen, M.; Wei, D.; Lu, W.B.; Liu, J.C. Study on the prediction of blasting block size in Changjiushenshan chert mining. Blasting 2021, 38, 17–23+31. [Google Scholar]
- Matidza, M.I.; Jianhua, Z.; Gang, H.; Mwangi, A.D. Assessment of blast-induced ground vibration at jinduicheng molybdenum open pit mine. Nat. Resour. Res. 2020, 29, 831–841. [Google Scholar] [CrossRef]
- Khandelwal, M.; Monjezi, M. Prediction of backbreak in open-pit blasting operations using the machine learning method. Rock Mech. Rock Eng. 2013, 46, 389–396. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Hosseini, S.; Hewage, K.; Sadiq, R. Green blasting policy: Simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network. J. Clean. Prod. 2021, 283, 124562. [Google Scholar] [CrossRef]
- Mostafa, T.M. Artificial neural network for prediction and control of blasting vibrations in Assiut (Egypt) limestone quarry. Int. J. Rock Mech. Min. Sci. 2009, 46, 426–431. [Google Scholar]
- Wang, R.C.; Wu, S. LM-based nerve network model for predicting burst degree. J. Hydropower Gener. 2019, 38, 100–109. [Google Scholar]
- Yu, Z.; Shi, X.; Zhou, J.; Chen, X.; Miao, X.; Teng, B.; Ipangelwa, T. Prediction of blast-induced rock movement during bench blasting: Use of gray wolf optimizer and support vector regression. Nat. Resour. Res. 2019, 29, 843–865. [Google Scholar] [CrossRef]
- Kinyua, E.M.; Jianhua, Z.; Kasomo, R.M.; Mauti, D.; Mwangangi, J. A review of the influence of blast fragmentation on downstream processing of metal ores. Miner. Eng. 2022, 186, 107743. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Sadiq, R.; Hewage, K. Optimization of blasting-associated costs in surface mines using risk-based probabilistic integer programming and firefly algorithm. Nat. Resour. Res. 2021, 30, 4789–4806. [Google Scholar] [CrossRef]
- Nielsen, K.; Lownds, C.M. Enhancement of taconite crushing and grinding through primary blasting. Int. J. Rock Mech. Min. Sci. 1997, 34, 226.e1–226.e14. [Google Scholar] [CrossRef]
- Ohadi, B.; Sun, X.; Esmaieli, K.; Consens, M.P. Predicting blast-induced outcomes using random forest models of multi-year blasting data from an open pit mine. Bull. Eng. Geol. Environ. 2020, 79, 329–343. [Google Scholar] [CrossRef]
- Silwa, J.D.; Amaya, J.G.; Asso, F. Development of a predictive model of fragmentation using drilling and blasting data in open pit mining. J. S. Afr. Inst. Min. Metall. 2017, 117, 1087–1094. [Google Scholar]
- Bakhtavar, E.; Abdollahisharif, J.; Ahmadi, M. Reduction of the undesirable bench-blasting consequences with emphasis on ground vibration using a developed multi-objective stochastic programming. Int. J. Min. Reclam. Environ. 2017, 31, 333–345. [Google Scholar] [CrossRef]
- Jang, H.; Topal, E. A review of soft computing technology applications in several mining problems. Appl. Soft Comput. 2014, 22, 638–651. [Google Scholar] [CrossRef]
- Wang, L.; Yao, Y.; Wang, K.; Adenutsi, C.D.; Zhao, G.; Lai, F. A novel surrogate-assisted multi-objective optimization method for well control parameters based on tri-Training. Nat. Resour. Res. 2021, 30, 4825–4841. [Google Scholar] [CrossRef]
- Sacchelli, S.; Bernetti, I. Integrated management of forest ecosystem services: An optimization model based on multi-objective analysis and metaheuristic approach. Nat. Resour. Res. 2019, 28 (Suppl. 1), 5–14. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Hajihassani, M.; Mohamad, E.T.; Marto, A.; Noorani, S. Blasting-induced flyrock and ground vibration prediction through an expert artifificial neural net work based on particle swarm optimization. Arab. J. Geosci. 2014, 7, 5383–5396. [Google Scholar] [CrossRef]
- Bui, X.; Choi, Y.; Atrushkevich, V.; Nguyen, H.; Tran, Q.; Long, N.Q.; Hoang, H. Prediction of blast-induced ground vibration intensity in open-pit mines using unmanned aerial vehicle and a novel intelligence system. Nat. Resour. Res. 2020, 29, 771–790. [Google Scholar] [CrossRef]
- Faradonbeh, R.; Monjezi, M. Prediction and minimization of blast-induced ground vibration using two robust meta-heuristic algorithms. Eng. Comput. 2017, 33, 835–851. [Google Scholar] [CrossRef]
- Bakhtavar, E.; Yousefi, S. Analysis of ground vibration risk on mine infrastructures: Integrating fuzzy slack-based measure model and failure effects analysis. Int. J. Environ. Sci. Technol. 2019, 16, 6065–6076. [Google Scholar] [CrossRef]
- Nguyen, H.; Drebenstedt, C.; Bui, X.N.; Bui, D.T. Prediction of blast-induced ground vibration in an open-pit mine by a novel hybrid model based on clustering and artifificial neural network. Nat. Resour. Res. 2019, 29, 691–709. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Golzar, S.B.; Larki, I.A.; Maryaki, M.Y.; Ghahremanians, T. Estimation of blast-induced ground vibration through a soft computing framework. Eng. Comput. 2017, 33, 951–959. [Google Scholar] [CrossRef]
- Murmu, S.; Maheshwari, P.; Verma, H.K. Empirical and probabilistic analysis of blast-induced ground vibrations. Int. J. Rock Mech. Min. Sci. 2018, 103, 267–274. [Google Scholar] [CrossRef]
- Ghasemi, E.; Ataei, M.; Hashemolhosseini, H. Development of a fuzzy model for predicting ground vibration caused by rock blasting in surface mining. J. Vib. Control. 2013, 19, 755–770. [Google Scholar] [CrossRef]
- Ainalis, D.; Kaufmann, O.; Tshibangu, J.P.; Verlinden, O.; Kouroussi, G. Assessing blast source pressure modelling approaches for the numerical simulation of ground vibrations. In Proceedings of the 23rd International Congress on Sound and Vibration, Athens, Greece, 10–14 July 2016. [Google Scholar]
- Shirani Faradonbeh, R.; Jahed Armaghani, D.; Abd Majid, M.Z.; Md Tahir, M.; Ramesh Murlidhar, B.; Monjezi, M.; Wong, H.M. Prediction of ground vibration due to quarry blasting based on gene expression programming: A new model for peak particle velocity prediction. Int. J. Environ. Sci. 2016, 13, 1453–1464. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Shi, X.; Li, X. Utilizing gradient boosted machine for the prediction of damage to residential structures owing to blasting vibrations of open pit mining. J. Vib. Control. 2016, 22, 3986–3997. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Momeni, E.; Abad, S.V.A.N.K.; Khan, D.M. Feasibility of ANFIS model for prediction of ground vibrations resulting from quarry blasting. Environ. Earth Sci. 2015, 74, 2845–2860. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Nguyen, H.; Bu, X.N.; Tran, Q.H.; Nguyen, D.A.; Bui, D.T.; Moayedi, H. Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost. Nat. Resour. Res. 2019, 29, 711–721. [Google Scholar] [CrossRef]
- Xue, X. Neuro-fuzzy based approach for prediction of blast-induced ground vibration. Appl. Acoust. 2019, 152, 73–78. [Google Scholar] [CrossRef]
- Zhou, J.; Asteris, P.G.; Armaghani, D.J.; Pham, B.T. Prediction of ground vibration induced by blasting operations through the use of the Bayesian Network and random forest models. Soil Dyn. Earthq. Eng. 2020, 139, 106390. [Google Scholar] [CrossRef]
- Yang, H.; Hasanipanah, M.; Tahir, M.M.; Bui, D.T. Intelligent Prediction of blasting-induced ground vibration using ANFIS optimized by GA and PSO. Nat. Resour. Res. 2020, 29, 739–750. [Google Scholar] [CrossRef]
- Hosseini, S.; Monjezi, M.; Bakhtavar, E. Minimization of blast-induced dust emission using gene-expression programming and grasshopper optimization algorithm: A smart mining solution based on blasting plan optimization. Clean Technol. Environ. Policy 2022, 24, 2313–2328. [Google Scholar] [CrossRef]
- Sadrossadat, E.; Basarir, H.; Karrech, A.; Durham, R.; Fourie, A.; Bin, H. The optimization of cemented hydraulic backfifill mixture design parameters for different strength conditions using artifificial intelligence algorithms. In Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection—MPES 2019, Perth, WA, Australia, 2-4 December 2019; Topal, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 219–227. [Google Scholar]
- Zhang, X.; Shi, J. Prediction of vibration velocity of bench blasting reflecting negative elevation effect. Geofluids 2021, 2021, 6662809. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.Z.; Zhou, J.; Chen, X.; Qiu, X.Y. Effective assessment of blast-induced ground vibration using an optimized random forest model based on a harris hawks optimization algorithm. Appl. Sci. 2020, 10, 1403. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Bui, X.N. Predicting blast-induced air overpressure: A robust artificial intelligence system based on artificial neural networks and random forest. Nat. Resour. Res. 2018, 28, 893–907. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, C.; Xie, S.; Liu, Y. Research on the prediction model of blasting vibration velocity in the dahuangshan mine. Appl. Sci. 2022, 12, 5849. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995. [Google Scholar]
- Suykens, J.A.K.; Vandewale, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Li, N.N.; Xue, W.; Xu, L. Improved PSO optimized LSSVM for liquid rocket engine fault detection. Comput. Simul. 2020, 37, 49–51. [Google Scholar]
- Komadja, G.C.; Rana, A.; Glodji, L.A.; Anye, V.; Jadaun, G.; Onwualu, P.A.; Sawmliana, C. Assessing ground vibration caused by rock blasting in surface mines using machine-learning approaches: A comparison of CART, SVR and MARS. Sustainability 2022, 14, 11060. [Google Scholar] [CrossRef]
- Nguyen, H.; Choi, Y.; Bui, X.-N.; Nguyen-Thoi, T. Predicting Blast-induced ground vibration in open-pit mines using vibration sensors and support vector regression-based optimization algorithms. Sensors 2020, 20, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, C.; Wu, Y.X.; Wei, Z.; Wang, G.; Wang, Y.; Li, X.; Zhou, Y.S. Prediction of blasting vibration effects in open pit mine based on PSO-LSSVM model. Eng. Blasting 2020, 26, 1–8. [Google Scholar]
- Coello, C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600), Honolulu, HI, USA, 12–17 May 2002. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Qing, S.; Tao, X.; Tatsuo, Y.; Nan, S. Multi-objective optimization of gas metal arc welding parameters and sequences for low-carbon steel(Q345D) T-joints. J. Iron Steel Res. Int. 2017, 24, 544–555. [Google Scholar]
- Cai, J.D.; Zheng, B.X.; Wang, X.G.; Li, P.F. Research on block size prediction and blasting control technology for multiple-size stone mining. J. Rock Mech. Eng. 2012, 31, 1462–1468. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Yu, J.C.; Jin, A.Y.; Pan, J.W.; Wang, J.T.; Zhang, C.H. Seismic vulnerability analysis of arch dams based on GA-BP neural network. J. Tsinghua Univ. (Nat. Sci. Ed.) 2022, 62, 1321–1329. [Google Scholar] [CrossRef]
- Guo, Q.P.; Yang, S.J.; Zhu, Z.H.; Xiang, Z.B.; Zhang, Z.H.; Hu, G.Q. Blast vibration velocity prediction using GA-BP neural network. Blasting 2020, 37, 148–152. [Google Scholar]
- Zhao, D.Q.; Li, C.X.; Lan, S.N. A time lag control algorithm for structural seismic response based on least squares support vector machine. Vib. Shock. 2013, 32, 165–172. [Google Scholar] [CrossRef]
Rock Type | Density (Kg/m3) | Cohesion (MPa) | Angle of Internal Friction (°) | Compressive Strength (MPa) | Tensile Strength (MPa) | Modulus of Elasticity (GPa) |
---|---|---|---|---|---|---|
rhyolite porphyry | 2680 | 0.9 | 40 | 206 | 40.5 | 0.26 |
Indexes | W (kg) | R (m) | H (m) | B (m) | S (m) | H0 (m) | PF (kg/m3) | PPV (cm/s) |
---|---|---|---|---|---|---|---|---|
minimum | 156 | 1.8 | 20 | 3 | 5 | 0.5 | 0.25 | 0.14 |
mean | 174.48 | 124.44 | 31.57 | 3.13 | 6.13 | 1.37 | 0.32 | 8.21 |
maximum | 195 | 125 | 654 | 3.3 | 6.5 | 2.59 | 0.44 | 33.58 |
standard deviation | 12.580 | 34.530 | 137.380 | 0.147 | 0.340 | 0.601 | 0.048 | 9.250 |
Model | nVar * | c1 | c2 | npop | popmax * | popmin * | vmax * | vmin * | Imax | |
---|---|---|---|---|---|---|---|---|---|---|
PSO-LSSVM | 2 | 1.5 | 1.7 | 0.9 | 40 | 1000 | 0.01 | 1 | −1 | 100 |
Model | nVar | c1 | c2 | npop | nrep * | nGrid * | Gamma * | Beta * | mu * | |
---|---|---|---|---|---|---|---|---|---|---|
MOPSO | 5 | 1.5 | 1.7 | 0.9 | 200 | 100 | 7 | 2 | 2 | 0.1 |
Models | Training Datasets | Test Datasets | ||||
---|---|---|---|---|---|---|
RMSE | MAE | r | RMSE | MAE | r | |
PSO-LSSVM | 1.912 | 1.262 | 0.983 | 1.954 | 1.717 | 0.965 |
LSSVM | 3.409 | 2.277 | 0.939 | 3.740 | 3.261 | 0.887 |
GA-BP | 2.723 | 1.989 | 0.961 | 2.907 | 2.020 | 0.906 |
BP | 3.438 | 2.642 | 0.935 | 4.127 | 2.661 | 0.878 |
Solution | W (kg) | PF (kg/m3) | S (m) | B (m) | H0 (m) | PPV (cm/s) | Br (%) |
---|---|---|---|---|---|---|---|
A | 169.95 | 0.29 | 6.33 | 3.21 | 1.26 | 0.683 | 0.196 |
B | 173.68 | 0.38 | 5.96 | 3.19 | 1.91 | 0.893 | 0.098 |
C | 180.32 | 0.41 | 5.02 | 3.04 | 2.35 | 1.109 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Zhao, P.; Li, P. Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms. Appl. Sci. 2023, 13, 7166. https://doi.org/10.3390/app13127166
Guo J, Zhao P, Li P. Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms. Applied Sciences. 2023; 13(12):7166. https://doi.org/10.3390/app13127166
Chicago/Turabian StyleGuo, Jiang, Peidong Zhao, and Pingfeng Li. 2023. "Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms" Applied Sciences 13, no. 12: 7166. https://doi.org/10.3390/app13127166
APA StyleGuo, J., Zhao, P., & Li, P. (2023). Prediction and Optimization of Blasting-Induced Ground Vibration in Open-Pit Mines Using Intelligent Algorithms. Applied Sciences, 13(12), 7166. https://doi.org/10.3390/app13127166