Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks
Abstract
:1. Introduction
2. Review of the Literature
3. Materials and Methods
3.1. SegNet-Based Proposed Model
3.2. Methodology Employed
3.3. Database and Setup
3.4. Augmented Image Generation Using GAN
3.5. Transfer Learning Process
3.6. Training and Optimization
3.7. Model and Evaluation Process
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mozley, P.D.; Bendtsen, C.; Zhao, B.; Schwartz, L.H.; Thorn, M.; Rong, Y.; Zhang, L.; Perrone, A.; Korn, R.; Buckler, A. Measurement of Tumor Volumes Improves RECIST-Based Response Assessments in Advanced Lung Cancer. Transl. Oncol. 2012, 5, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Chi, J.; Liu, J.; Yang, L.; Zhang, B.; Yu, D.; Zhao, Y.; Lu, X. A survey of computer-aided diagnosis of lung nodules from CT scans using deep learning. Comput. Biol. Med. 2021, 137, 104806. [Google Scholar] [CrossRef] [PubMed]
- Nishio, M.; Muramatsu, C.; Noguchi, S.; Nakai, H.; Fujimoto, K.; Sakamoto, R.; Fujita, H. Attribute-guided image generation of three-dimensional computed tomography images of lung nodules using a generative adversarial network. Comput. Biol. Med. 2020, 126, 104032. [Google Scholar] [CrossRef] [PubMed]
- Hayes, S.; Pietanza, M.; O’Driscoll, D.; Zheng, J.; Moskowitz, C.; Kris, M.; Ginsberg, M. Comparison of CT volumetric measurement with RECIST response in patients with lung cancer. Eur. J. Radiol. 2016, 85, 524–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isensee, F.; Petersen, J.; Klein, A.; Zimmerer, D.; Jaeger, P.F.; Kohl, S.; Wasserthal, J.; Koehler, G.; Norajitra, T.; Wirkert, S.; et al. nnU-Net: Self-adapting Framework for U-Net-Based Medical Image Segmentation. arXiv 2018, arXiv:1809.10486. [Google Scholar]
- Chen, W.; Wei, H.; Peng, S.; Sun, J.; Qiao, X.; Liu, B. HSN: Hybrid Segmentation Network for Small Cell Lung Cancer Segmentation. IEEE Access 2019, 7, 75591–75603. [Google Scholar] [CrossRef]
- Gordienko, Y.; Gang, P.; Hui, J.; Zeng, W.; Kochura, Y.; Alienin, O.; Rokovyi, O.; Stirenko, S. Deep Learning with Lung Segmentation and Bone Shadow Exclusion Techniques for Chest X-ray Analysis of Lung Cancer. In Proceedings of the International Conference on Computer Science, Engineering and Education Applications, Kiev, Ukraine, 21–22 January 2020; pp. 638–647. [Google Scholar]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Tschandl, P.; Sinz, C.; Kittler, H. Domain-specific classification-pretrained fully convolutional network encoders for skin lesion segmentation. Comput. Biol. Med. 2019, 104, 111–116. [Google Scholar] [CrossRef]
- Chen, M.; Shi, X.; Zhang, Y.; Wu, D.; Guizani, M. Deep Feature Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Trans. Big Data 2017, 7, 750–758. [Google Scholar] [CrossRef]
- Shakir, H.; Khan, T.M.R.; Rasheed, H. 3-D segmentation of lung nodules using hybrid level sets. Comput. Biol. Med. 2018, 96, 214–226. [Google Scholar] [CrossRef]
- Li, X.; Li, B.; Liu, F.; Yin, H.; Zhou, F. Segmentation of Pulmonary Nodules Using a GMM Fuzzy C-Means Algorithm. IEEE Access 2020, 8, 37541–37556. [Google Scholar] [CrossRef]
- Shen, S.; Bui, A.A.; Cong, J.; Hsu, W. An automated lung segmentation approach using bidirectional chain codes to improve nodule detection accuracy. Comput. Biol. Med. 2015, 57, 139–149. [Google Scholar] [CrossRef]
- Farheen, F.; Shamil, S.; Ibtehaz, N.; Rahman, M.S. Revisiting segmentation of lung tumors from CT images. Comput. Biol. Med. 2022, 144, 105385. [Google Scholar] [CrossRef] [PubMed]
- Tomassini, S.; Falcionelli, N.; Sernani, P.; Burattini, L.; Dragoni, A.F. Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey. Comput. Biol. Med. 2022, 146, 105691. [Google Scholar] [CrossRef]
- Tyagi, S.; Talbar, S.N. CSE-GAN: A 3D conditional generative adversarial network with concurrent squeeze-and-excitation blocks for lung nodule segmentation. Comput. Biol. Med. 2022, 147, 105781. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Xu, Z.; Tang, Y.; Harrison, A.P.; Mollura, D.J. CT-realistic Lung Nodule Simulation from ds Conditional Generative Adversarial Networks for Robust Lung Segmentation. Lect. Notes Comput. Sci. (Incl. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinform.) 2018, 11071, 732–740. Available online: http://arxiv.org/abs/1806.04051 (accessed on 28 February 2023).
- Han, C.; Kitamura, Y.; Kudo, A.; Ichinose, A.; Rundo, L.; Furukawa, Y.; Umemoto, K.; Li, Y.; Nakayama, H. Synthesizing Diverse Lung Nodules Wherever Massively: 3D Multi-Conditional GAN-Based CT Image Augmentation for Object Detection. In Proceedings of the 2019 International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019; pp. 729–737. Available online: http://arxiv.org/abs/1906.04962 (accessed on 28 February 2023).
- Onishi, Y.; Teramoto, A.; Tsujimoto, M.; Tsukamoto, T.; Saito, K.; Toyama, H.; Imaizumi, K.; Fujita, H. Automated Pulmonary Nodule Classification in Computed Tomography Images Using a Deep Convolutional Neural Network Trained by Generative Adversarial Networks. BioMed Res. Int. 2019, 2019, 6051939. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, S.; Grbic, S.; Setio, A.A.A.; Xu, Z.; Gibson, E.; Chabin, G.; Georgescu, B.; Laine, A.F.; Comaniciu, D. Class-Aware Adversarial Lung Nodule Synthesis in CT Images. In Proceedings of the 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), Venice, Italy, 8–11 April 2019. [Google Scholar] [CrossRef] [Green Version]
- Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef] [Green Version]
- Armanious, K.; Jiang, C.; Fischer, M.; Küstner, T.; Hepp, T.; Nikolaou, K.; Gatidis, S.; Yang, B. MedGAN: Medical image translation using GANs. Comput. Med. Imaging Graph. 2020, 79, 101684. [Google Scholar] [CrossRef]
- Cai, L.; Long, T.; Dai, Y.; Huang, Y. Mask R-CNN-Based Detection and Segmentation for Pulmonary Nodule 3D Visualization Diagnosis. IEEE Access 2020, 8, 44400–44409. [Google Scholar] [CrossRef]
- Huang, X.; Sun, W.; Tseng, T.-L.; Li, C.; Qian, W. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks. Comput. Med. Imaging Graph. 2019, 74, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Gao, L.; Duan, H.; Huang, G.; Ye, X.; Nie, S. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization. Med. Phys. 2020, 47, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, C.; Bai, J.; Liao, G. Fine-tuning Pre-trained Convolutional Neural Networks for Gastric Precancerous Disease Classification on Magnification Narrow-band Imaging Images. Neurocomputing 2020, 392, 253–267. [Google Scholar] [CrossRef]
Training | Benign | Augmented | Malignant | Augmented |
---|---|---|---|---|
SegNet | 450 | 1280 | 430 | 1148 |
GAN | 225 | 640 | 215 | 574 |
Method | DSC | PPV | Sensitivity |
---|---|---|---|
SegNet + GAN + augmentation | 0.87 | 0.86 | 0.89 |
SegNet + GAN | 0.86 | 0.85 | 0.87 |
SegNet + augmentation | 0.80 | 0.79 | 0.82 |
SegNet | 0.78 | 0.77 | 0.80 |
Method | DSC | PPV | Sensitivity |
---|---|---|---|
SgNet + GAN | 0.87 | 0.86 | 0.89 |
U-Net + GAN | 0.84 | 0.86 | 0.87 |
Autoencoder | 0.75 | 0.74 | 0.77 |
Variational Autoencoder (VAE) | 0.80 | 0.81 | 0.82 |
Design Choice | Impact on Performance |
---|---|
SegNet architecture | Deeper model with more convolutional layers performed better. For example, SegNet-4 with 11 convolutional layers outperformed SegNet-2 with 7 convolutional layers. |
Adversarial training | Significant improvement in nodule segmentation accuracy. The proposed adversarial training method improved the mean dice coefficient for nodules from 0.717 to 0.773. |
Pre-processing | Lung cropping and normalization improved nodule segmentation accuracy. The mean dice coefficient for nodules increased from 0.717 to 0.743 after lung cropping and normalization. |
Loss function | Dice loss performed better than binary cross-entropy. The mean dice coefficient for nodules was higher with dice loss (0.773) than with binary cross-entropy (0.752). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheppamkuzhi, V.; Dharmaraj, M. Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks. Appl. Sci. 2023, 13, 7281. https://doi.org/10.3390/app13127281
Cheppamkuzhi V, Dharmaraj M. Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks. Applied Sciences. 2023; 13(12):7281. https://doi.org/10.3390/app13127281
Chicago/Turabian StyleCheppamkuzhi, Vinod, and Menaka Dharmaraj. 2023. "Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks" Applied Sciences 13, no. 12: 7281. https://doi.org/10.3390/app13127281
APA StyleCheppamkuzhi, V., & Dharmaraj, M. (2023). Improved Segmentation of Pulmonary Nodules Using Soft Computing Techniques with SegNet and Adversarial Networks. Applied Sciences, 13(12), 7281. https://doi.org/10.3390/app13127281