An Optimized Fractional-Order PID Horizontal Vibration Control Approach for a High-Speed Elevator
Abstract
:1. Introduction
- An optimization design model for elevator vibration suppression is established, and an optimized FOPID controller is designed to suppress horizontal vibration effectively.
- Selecting control cost and system performance as the objective functions of the optimization algorithm, MOGA is used to optimize the parameters of both the PID controller and FOPID controller.
- Through multiple iterations, the proposed optimized FOPID controller can achieve the expected system performance at a limited control cost, which can reduce the horizontal acceleration by about 68% compared to the case without a controller and about 25% compared to PID control.
2. Dynamic Model of Horizontal Vibration of High-Speed Elevator
3. Optimized FOPID Control Method Based on MOGA
3.1. Control Problem Description
3.2. Fractional Order PID Controller
3.3. Multi-Objective Genetic Algorithm
4. Numerical Results and Validation
4.1. Model Parameters
4.2. Results and Discussion
5. Conclusions
- Considering elevators’ vibration characteristics during actual operation, a dynamic model of the elevator with the car body and frame separated is established. White noise with a low-pass filter is used to simulate rail irregularities, and the simulation experiment is more accurate.
- An optimization design model for elevator vibration suppression is established, and MOGA is used to optimize the FOPID controller to limit the control cost and ensure the feasibility of the designed controller.
- From the results, the horizontal acceleration of the system has been reduced by 68% under optimized FOPID control compared to no control and reduced by about 25% compared to the optimized PID control, fully demonstrating the effectiveness of the designed controller.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tao, R.; Xu, Y.; Deng, F.; Guo, S.; Wang, H. Feature extraction of an elevator guide shoe vibration signal based on SVD optimizing LMD. J. Vib. Shock. 2017, 36, 166–171. [Google Scholar]
- Qin, C.J.; Tao, J.F.; Liu, C.L. A novel stability prediction method for milling operations using the holistic-interpolation scheme. Proc. IMechE., Part C: J. Mech. Eng. Sci. 2019, 233, 4463–4475. [Google Scholar] [CrossRef]
- Cao, S.X.; He, Q.; Zhang, R.J.; Cong, D.S. Active Control Strategy of High-Speed Elevator Horizontal Vibration Based on LMI Optimization. Control Eng. Appl. Inform. 2020, 22, 72–83. [Google Scholar]
- Feng, Y.H.; Zhang, J.W. The modeling and simulation of horizontal vibrations for high-speed elevator. J. Shanghai Jiaotong Univ. 2007, 41, 557–560. [Google Scholar]
- Feng, Y.H.; Zhang, J.W. Study on active control strategy of horizontal vibrations of high-speed elevator. J. Syst. Simul. 2007, 19, 843–845. [Google Scholar]
- Zhang, Q.; Yang, Z.; Wang, C.; Yang, Y.; Zhang, R. Intelligent control of active shock absorber for high-speed elevator car. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 233, 3804–3815. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, R.; Zhang, Q.; Liu, L. Mixed H2/H∞ guaranteed cost control for high speed elevator active guide shoe with parametric uncertainties. Mech. Ind. 2020, 21, 502. [Google Scholar] [CrossRef]
- He, Q.; Zhang, P.; Cao, S.; Zhang, R.; Zhang, Q. Intelligent control of horizontal vibration of high-speed elevator based on gas–liquid active guide shoes. Mech. Ind. 2021, 22, 2. [Google Scholar] [CrossRef]
- Santo, D.R.; Balthazar, J.M.; Tusset, A.M.; Piccirilo, V.; Brasil, R.; Silveira, M. On nonlinear horizontal dynamics and vibrations control for high-speed elevators. J. Vib. Control 2016, 24, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhang, M.; Zhang, R.; Liu, L. Research on predictive sliding mode control strategy for horizontal vibration of ultra-high-speed elevator car system based on adaptive fuzzy. Meas. Control 2021, 54, 360–373. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; He, Q.; Liu, L. Variable Universe Fuzzy Control of High-Speed Elevator Horizontal Vibration Based on Firefly Algorithm and Backpropagation Fuzzy Neural Network. IEEE Access 2021, 9, 57020–57032. [Google Scholar] [CrossRef]
- Tusset, A.M.; Santo, D.R.; Balthazar, J.M.; Piccirillo, V.; Santos LC, D.; Brasil, R.M. Active vibration control of an elevator system using magnetorheological damper actuator. Int. J. Nonlinear Dyn. Control 2017, 1, 114–131. [Google Scholar] [CrossRef]
- Zhao, M.M.; Qin, C.J.; Tang, R.; Tao, J.F.; Xu, S.; Liu, C.L. An Acceleration Feedback-Based Active Control Method for High-Speed Elevator Horizontal Vibration. J. Vib. Eng. Technol. 2023, 1–14. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, L.; Zhang, S.; Su, G.; Zhu, L.; Zhang, X. High-speed elevator car system semi-active horizontal vibration reduction method based on the improved particle swarm algorithm. J. Vib. Control 2022. [Google Scholar] [CrossRef]
- Zamani, A.-A.; Etedali, S. Optimal fractional-order PID control design for time-delayed multi-input multi-output seismic-excited structural system. J. Vib. Control 2021, 29, 802–819. [Google Scholar] [CrossRef]
- Zeng, G.-Q.; Chen, J.; Dai, Y.-X.; Li, L.-M.; Zheng, C.-W.; Chen, M.-R. Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 2015, 160, 173–184. [Google Scholar] [CrossRef]
- Cao, J.Y.; Cao, B.G. Design of fractional order controller based on particle swarm optimization. Int. J. Control Autom. Syst. 2006, 4, 775–781. [Google Scholar]
- Birs, I.; Folea, S.; Prodan, O.; Dulf, E.; Muresan, C. An experimental tuning approach of fractional order controllers in the frequency domain. Appl. Sci. 2020, 10, 2379. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, D.; Panda, S. Modified salp swarm algorithm-optimized fractional-order adaptive fuzzy PID controller for frequency regulation of hybrid power system with electric vehicle. J. Control Autom. Electr. Syst. 2021, 32, 416–438. [Google Scholar] [CrossRef]
- Ataşlar-Ayyıldız, B. Robust Trajectory Tracking Control for Serial Robotic Manipulators Using Fractional Order-Based PTID Controller. Fractal Fractional. 2023, 7, 250. [Google Scholar] [CrossRef]
- Idir, A.; Canale, L.; Bensafia, Y.; Khettab, K. Design and Robust Performance Analysis of Low-Order Approximation of Fractional PID Controller Based on an IABC Algorithm for an Automatic Voltage Regulator System. Energies 2022, 15, 8973. [Google Scholar] [CrossRef]
- Silaa, M.Y.; Barambones, O.; Derbeli, M.; Napole, C.; Bencherif, A. Fractional Order PID Design for a Proton Exchange Membrane Fuel Cell System Using an Extended Grey Wolf Optimizer. Processes 2022, 10, 450. [Google Scholar] [CrossRef]
- Mok, R.; Ahmad, M.A. Fast and optimal tuning of fractional order PID controller for AVR system based on memorizable-smoothed functional algorithm. Eng. Sci. Technol. Int. J. 2022, 35, 101264. [Google Scholar] [CrossRef]
- Jan, A.Z.; Kedzia, K.; Abbass, M.J. Fractional-Order PID Controller (FOPID)-Based Iterative Learning Control for a Nonlinear Boiler System. Energies 2023, 16, 1045. [Google Scholar] [CrossRef]
- Fu, W.J. Research on Car Lateral Vibration Suspensions for Super High Speed Elevators. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, China, 2008. [Google Scholar]
- Tepljakov, A.; Petlenkov, E.; Belikov, J. (Eds.) A Flexible MATLAB Tool for Optimal Fractional-order PID Controller Design Subject to Specifications. In Proceedings of the 31st Chinese Control Conference, Hefei, China, 25–27 July 2012. [Google Scholar]
Parameter | Unit | Value |
---|---|---|
1100 | ||
2400 | ||
1600 | ||
8600 | ||
120,000 | ||
170,000 | ||
2000 | ||
2300 | ||
1.6 | ||
1.4 | ||
3.3 | ||
4.5 | ||
1.25 | ||
1.75 |
Uncontrolled | C1 | C2 | C3 | |
---|---|---|---|---|
4.817 × 104 | 9.616 × 103 | 1.519 × 104 | 2.784 × 104 | |
0 | 106.3202 | 77.7123 | 47.9846 | |
Relative displacement of car frame bottom | 0.0020 | 0.0019 | 0.0019 | 0.0019 |
Relative offset () | 8.5845 × 10−4 | 1.4406 × 10−4 | 2.3772 × 10−4 | 4.5487 × 10−4 |
Horizontal acceleration of the car body () | 0.3933 | 0.0785 | 0.1240 | 0.2273 |
Control force () | 0 | 647.8452 | 464.9079 | 283.5612 |
Control force () | 0 | 75.9603 | 10.6733 | 19.4114 |
Control force () | 0 | 573.9356 | 431.7551 | 271.3025 |
Control force () | 0 | 14.4725 | 10.3735 | 19.6114 |
C2 | PID | |
---|---|---|
1.519 × 104 | 2.0229 × 104 | |
77.7123 | 80.2407 | |
Relative displacement of car frame bottom () | 0.0019 | 0.0022 |
Relative deviation () | 2.3772 × 10−4 | 3.2882 × 10−4 |
Horizontal acceleration of the car body () | 0.1240 | 0.1652 |
Control force () | 464.9079 | 489.1896 |
Control force () | 10.6733 | 126.8436 |
Control force () | 431.7551 | 429.4039 |
Control force () | 10.3735 | 40.8524 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, R.; Qin, C.; Zhao, M.; Xu, S.; Tao, J.; Liu, C. An Optimized Fractional-Order PID Horizontal Vibration Control Approach for a High-Speed Elevator. Appl. Sci. 2023, 13, 7314. https://doi.org/10.3390/app13127314
Tang R, Qin C, Zhao M, Xu S, Tao J, Liu C. An Optimized Fractional-Order PID Horizontal Vibration Control Approach for a High-Speed Elevator. Applied Sciences. 2023; 13(12):7314. https://doi.org/10.3390/app13127314
Chicago/Turabian StyleTang, Rui, Chengjin Qin, Mengmeng Zhao, Shuang Xu, Jianfeng Tao, and Chengliang Liu. 2023. "An Optimized Fractional-Order PID Horizontal Vibration Control Approach for a High-Speed Elevator" Applied Sciences 13, no. 12: 7314. https://doi.org/10.3390/app13127314
APA StyleTang, R., Qin, C., Zhao, M., Xu, S., Tao, J., & Liu, C. (2023). An Optimized Fractional-Order PID Horizontal Vibration Control Approach for a High-Speed Elevator. Applied Sciences, 13(12), 7314. https://doi.org/10.3390/app13127314