Clustering of LMS Use Strategies with Autoencoders
Abstract
:1. Introduction
- RQ1: Is it possible to avoid the manual data pre-processing work?
- RQ2: Is it possible to improve the clustering performance by reducing dimensionality using deep learning instead of manually transforming data?
- RQ3: Do we obtain a well-defined clustering structure when we start from the latent space?
2. Materials and Methods
- Logs acquisition;
- Data preprocessing;
- Dimensionality reduction;
- Classification.
2.1. Logs Acquisition
2.2. Data Preprocessing
2.3. Dimensionality Reduction
2.4. Clustering
2.5. Research Ethics
3. Results and Discussion
4. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muhammad, B.A.; Qi, C.; Wu, Z.; Ahmad, H.K. GRL-LS: A Learning Style Detection in Online Education Using Graph Representation Learning. Expert Syst. Appl. 2022, 201, 117138. [Google Scholar] [CrossRef]
- Rincon-Flores, E.G.; Lopez-Camacho, E.; Mena, J.; Olmos, O. Teaching through Learning Analytics: Predicting Student Learning Profiles in a Physics Course at a Higher Education Institution. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 82–89. [Google Scholar] [CrossRef]
- Celik, I.; Dindar, M.; Muukkonen, H.; Järvelä, S. The Promises and Challenges of Artificial Intelligence for Teachers: A Systematic Review of Research. TechTrends 2022, 66, 616–630. [Google Scholar] [CrossRef]
- Manhiça, R.; Santos, A.; Cravino, J. The Use of Artificial Intelligence in Learning Management Systems in the Context of Higher Education: Systematic Literature Review. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar]
- Bennacer, I.; Venant, R.; Iksal, S. A Behavioral Model to Support Teachers’ Self-Assessment and Improve Their LMS Mastery. In Proceedings of the 22nd IEEE International Conference on Advanced Learning Technologies, Bucharest, Romania, 1–4 July 2022. [Google Scholar]
- D’Mello, S.K. Emotional Learning Analytics. In Handbook of Learning Analytics; Society for Learning Analytics Research: Edmonton, AB, Canada, 2017; pp. 115–127. ISBN 978-0-9952408-0-3. [Google Scholar]
- Mousavi, S.M.; Zhu, W.; Ellsworth, W.; Beroza, G. Unsupervised Clustering of Seismic Signals Using Deep Convolutional Autoencoders. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1693–1697. [Google Scholar] [CrossRef]
- Rodríguez, A.L.; Fahara, M.F.; Tecnológico, C.; León, N. Online Teaching Styles: A Study in Distance Education. Int. J. Univ. Teach. Fac. Dev. 2010, 1, 1–14. [Google Scholar]
- Vikas, S.; Mathur, A. An Empirical Study of Student Perception towards Pedagogy, Teaching Style and Effectiveness of Online Classes. Educ. Inf. Technol. 2022, 27, 589–610. [Google Scholar] [CrossRef] [PubMed]
- Regueras, L.M.; Verdú, M.J.; de Castro, J.-P. A Rule-Based Expert System for Teachers’ Certification in the Use of Learning Management Systems. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 75–81. [Google Scholar] [CrossRef]
- Regueras, L.M.; Verdú, M.J.; Castro, J.D.; Verdú, E. Clustering Analysis for Automatic Certification of LMS Strategies in a University Virtual Campus. IEEE Access 2019, 7, 137680–137690. [Google Scholar] [CrossRef]
- Bank, D.; Koenigstein, N.; Giryes, R. Autoencoders. arXiv 2021, arXiv:2003.05991. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Ardelean, E.-R.; Coporîie, A.; Ichim, A.-M.; Dînșoreanu, M.; Mureșan, R.C. A Study of Autoencoders as a Feature Extraction Technique for Spike Sorting. PLoS ONE 2023, 18, e0282810. [Google Scholar] [CrossRef]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the Dimensionality of Data with Neural Networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Casella, M.; Dolce, P.; Ponticorvo, M.; Marocco, D. Autoencoders as an Alternative Approach to Principal Component Analysis for Dimensionality Reduction. An Application on Simulated Data from Psychometric Models. In Proceedings of the Third Symposium on Psychology-Based Technologies (PSYCHOBIT2021), Naples, Italy, 4–5 October 2021; Volume 3100. [Google Scholar]
- Mantripragada, K.; Dao, P.D.; He, Y.; Qureshi, F.Z. The Effects of Spectral Dimensionality Reduction on Hyperspectral Pixel Classification: A Case Study. PLoS ONE 2022, 17, e0269174. [Google Scholar] [CrossRef] [PubMed]
- Fournier, Q.; Aloise, D. Empirical Comparison between Autoencoders and Traditional Dimensionality Reduction Methods. In Proceedings of the 2019 IEEE Second International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Sardinia, Italy, 3–5 June 2019; pp. 211–214. [Google Scholar]
- Mancisidor, R.A.; Kampffmeyer, M.; Aas, K.; Jenssen, R. Learning Latent Representations of Bank Customers with the Variational Autoencoder. Expert Syst. Appl. 2021, 164, 114020. [Google Scholar] [CrossRef]
- Bobadilla, J.; Ortega, F.; Gutiérrez, A.; Alonso, S. Classification-Based Deep Neural Network Architecture for Collaborative Filtering Recommender Systems. Int. J. Interact. Multimed. Artif. Intell. 2020, 6, 68. [Google Scholar] [CrossRef] [Green Version]
- Wen, T.; Zhang, Z. Deep Convolution Neural Network and Autoencoders-Based Unsupervised Feature Learning of EEG Signals. IEEE Access 2018, 6, 25399–25410. [Google Scholar] [CrossRef]
- Spencer, A.P.C.; Goodfellow, M. Using Deep Clustering to Improve FMRI Dynamic Functional Connectivity Analysis. NeuroImage 2022, 257, 119288. [Google Scholar] [CrossRef]
- Amrutha, E.; Arivazhagan, S.; Jebarani, W.S.L. Deep Clustering Network for Steganographer Detection Using Latent Features Extracted from a Novel Convolutional Autoencoder. Neural Process. Lett. 2022. [Google Scholar] [CrossRef]
- Shinde, K.; Itier, V.; Mennesson, J.; Vasiukov, D.; Shakoor, M. Dimensionality Reduction through Convolutional Autoencoders for Fracture Patterns Prediction. Appl. Math. Model. 2023, 114, 94–113. [Google Scholar] [CrossRef]
- Hurtado, S.; García-Nieto, J.; Popov, A.; Navas-Delgado, I. Human Activity Recognition From Sensorised Patient’s Data in Healthcare: A Streaming Deep Learning-Based Approach. Int. J. Interact. Multimed. Artif. Intell. 2023, 8, 23–37. [Google Scholar] [CrossRef]
- De Oliveira, H.; Martin, P.; Ludovic, L.; Vincent, A.; Xiaolan, X. Explaining Predictive Factors in Patient Pathways Using Autoencoders. PLoS ONE 2022, 17, e0277135. [Google Scholar] [CrossRef] [PubMed]
- Basnet, R.B.; Johnson, C.; Doleck, T. Dropout Prediction in Moocs Using Deep Learning and Machine Learning. Educ. Inf. Technol. 2022, 27, 11499–11513. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Liu, Z.; Peng, X.; Yang, Z. Automated Detection of Emotional and Cognitive Engagement in MOOC Discussions to Predict Learning Achievement. Comput. Educ. 2022, 181, 104461. [Google Scholar] [CrossRef]
- Moridis, C.N.; Economides, A.A. Prediction of Student’s Mood during an Online Test Using Formula-Based and Neural Network-Based Method. Comput. Educ. 2009, 53, 644–652. [Google Scholar] [CrossRef]
- Tomasevic, N.; Gvozdenovic, N.; Vranes, S. An Overview and Comparison of Supervised Data Mining Techniques for Student Exam Performance Prediction. Comput. Educ. 2020, 143, 103676. [Google Scholar] [CrossRef]
- Sarwat, S.; Ullah, N.; Sadiq, S.; Saleem, R.; Umer, M.; Eshmawi, A.A.; Mohamed, A.; Ashraf, I. Predicting Students’ Academic Performance with Conditional Generative Adversarial Network and Deep SVM. Sensors 2022, 22, 4834. [Google Scholar] [CrossRef]
- Tao, T.; Sun, C.; Wu, Z.; Yang, J.; Wang, J. Deep Neural Network-Based Prediction and Early Warning of Student Grades and Recommendations for Similar Learning Approaches. Appl. Sci. 2022, 12, 7733. [Google Scholar] [CrossRef]
- Aljaloud, A.S.; Uliyan, D.M.; Alkhalil, A.; Elrhman, M.A.; Alogali, A.F.M.; Altameemi, Y.M.; Altamimi, M.; Kwan, P. A Deep Learning Model to Predict Student Learning Outcomes in LMS Using CNN and LSTM. IEEE Access 2022, 10, 85255–85265. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Liu, S.; Yin, H.; Li, J.; Yang, H.; Xia, Y. A Learning Style Classification Approach Based on Deep Belief Network for Large-Scale Online Education. J. Cloud Comput. 2020, 9, 26. [Google Scholar] [CrossRef]
- Ghatak, A. Deep Learning with R; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-981-13-5849-4. [Google Scholar]
- Allaire, J.; Chollet, F. Keras: R Interface to “Keras”; R Package Version 2.8.0.9000. 2022. Available online: https://tensorflow.rstudio.com/ (accessed on 18 June 2023).
- Palinkas, L.A.; Horwitz, S.M.; Green, C.A.; Wisdom, J.P.; Duan, N.; Hoagwood, K. Purposeful Sampling for Qualitative Data Collection and Analysis in Mixed Method Implementation Research. Adm. Policy Ment. Health Ment. Health Serv. Res. 2015, 42, 533–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitmer, J.; Nuñez, N.; Harfield, T.; Forteza, D. Patterns in Blackboard Learn Tool Use: Five Course Design Archetypes; Blackboard: Washington, DC, USA, 2016; Available online: https://www.blackboard.com/sites/default/files/resource/pdf/Bb_Patterns_LMS_Course_Design_r5_tcm136-42998.pdf (accessed on 18 June 2023).
- Park, Y.; Yu, J.H.; Jo, I.-H. Clustering Blended Learning Courses by Online Behavior Data: A Case Study in a Korean Higher Education Institute. Internet High. Educ. 2016, 29, 1–11. [Google Scholar] [CrossRef]
- Cole, J.; Foster, H. Using Moodle—Teaching with the Popular Open Source Course Management System, 2nd ed.; O’Reilly: Beijing, China, 2007. [Google Scholar]
- Song, C.; Liu, F.; Huang, Y.; Wang, L.; Tan, T. Auto-Encoder Based Data Clustering. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Havana, Cuba, 20–13 November 2013; Ruiz-Shulcloper, J., Sanniti di Baja, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 117–124. [Google Scholar]
- Jo, I.-H.; Park, Y.; Lee, H.; Song, J.; Kang, S. Clustering Analysis of Academic Courses Based on LMS Usage Levels and Patterns: Gaussian Mixture Model, K-Means Clustering and Hierarchical Clustering. In Proceedings of the Fourth International Conference on Data Analytics, Nice, France, 19–24 July 2015; pp. 130–137. [Google Scholar]
- Rindskopf, D. Latent Class Analysis. In The Sage Handbook of Quantitative Methods in Psychology; Sage Publications Ltd.: Thousand, CA, USA, 2009; pp. 199–215. ISBN 978-1-4129-3091-8. [Google Scholar]
- Yuan, C.; Yang, H. Research on K-Value Selection Method of K-Means Clustering Algorithm. Multidiscip. Sci. J. 2019, 2, 226–235. [Google Scholar] [CrossRef] [Green Version]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Slade, S.; Prinsloo, P. Learning Analytics: Ethical Issues and Dilemmas. Am. Behav. Sci. 2013, 57, 1509–1528. [Google Scholar] [CrossRef] [Green Version]
- Rivero, A.J.L.; Beato, M.E.; Martínez, C.M.; Vázquez, P.G.C. Empirical Analysis of Ethical Principles Applied to Different AI Uses Cases. Int. J. Interact. Multimed. Artif. Intell. 2022, 7, 105. [Google Scholar]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.-A. Extracting and Composing Robust Features with Denoising Autoencoders. In Proceedings of the 25th International Conference on Machine Learning, New York, NY, USA, 5 July 2008; Association for Computing Machinery: New York, NY, USA; pp. 1096–1103. [Google Scholar]
- Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.-A. Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408. [Google Scholar]
- Makhzani, A.; Frey, B. K-Sparse Autoencoders. arXiv 2014, arXiv:1312.5663. [Google Scholar]
- Zeng, N.; Zhang, H.; Song, B.; Liu, W.; Li, Y.; Dobaie, A.M. Facial Expression Recognition via Learning Deep Sparse Autoencoders. Neurocomputing 2018, 273, 643–649. [Google Scholar] [CrossRef]
- Chango, W.; Lara, J.A.; Cerezo, R.; Romero, C. A Review on Data Fusion in Multimodal Learning Analytics and Educational Data Mining. WIREs Data Min. Knowl. Discov. 2022, 12, e1458. [Google Scholar] [CrossRef]
- Kollom, K.; Tammets, K.; Scheffel, M.; Tsai, Y.-S.; Jivet, I.; Muñoz-Merino, P.J.; Moreno-Marcos, P.M.; Whitelock-Wainwright, A.; Calleja, A.R.; Gasevic, D.; et al. A Four-Country Cross-Case Analysis of Academic Staff Expectations about Learning Analytics in Higher Education. Internet High. Educ. 2021, 49, 100788. [Google Scholar] [CrossRef]
Variable Name | Counted Data | Role |
---|---|---|
Resources | Resources (html, pdf documents) | Teacher |
ResourceViews | Resource views or downloads | Student |
Forums | Discussion forums | Teacher |
ForumNews | Teachers’ forum posts | Teacher |
ForumInteractions | Students’ forum views and posts | Student |
Assigns | Assignments | Teacher |
AssignSubmissions | Assignment submissions | Student |
Quizzes | Quizzes | Teacher |
QuizSubmissions | Quiz submissions | Student |
AdvActivities | Advanced activities | Teacher |
AdvActivitySubmissions | Advanced activity submissions | Student |
GradeItems | Gradebook items | Teacher |
GradeFeedbacks | Feedbacks of gradebooks | Teacher |
GradeAdvanced | Manual or calculated gradebook items | Teacher |
BasicInteractions | Entries (glossary, database, chat) | Student |
Feedbacks | Feedback activities (surveys) | Teacher |
CalendarEvents | Manual calendar events | Teacher |
Typology | Description |
---|---|
Inactive—I | Low use of Moodle |
Repository—R | Content and news |
Communicative—C | Content, assignments and teacher–student interactions |
Evaluative—E | Content, assignments and evaluative elements |
Planner—P | Content, assignments and very high use of calendar events |
Balanced—B | Heavy and balanced use of Moodle tools |
adVanced—V | High and wide use of Moodle tools, including advanced tools |
Method | Homogeneity | Heterogeneity |
---|---|---|
K-means + Autoencoders | 0.5354 | 2.2339 |
K-means + Manual Preprocessing | 0.6548 | 2.0887 |
LCA + Manual Preprocessing | 0.8097 | 2.2049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdú, M.J.; Regueras, L.M.; de Castro, J.P.; Verdú, E. Clustering of LMS Use Strategies with Autoencoders. Appl. Sci. 2023, 13, 7334. https://doi.org/10.3390/app13127334
Verdú MJ, Regueras LM, de Castro JP, Verdú E. Clustering of LMS Use Strategies with Autoencoders. Applied Sciences. 2023; 13(12):7334. https://doi.org/10.3390/app13127334
Chicago/Turabian StyleVerdú, María J., Luisa M. Regueras, Juan P. de Castro, and Elena Verdú. 2023. "Clustering of LMS Use Strategies with Autoencoders" Applied Sciences 13, no. 12: 7334. https://doi.org/10.3390/app13127334
APA StyleVerdú, M. J., Regueras, L. M., de Castro, J. P., & Verdú, E. (2023). Clustering of LMS Use Strategies with Autoencoders. Applied Sciences, 13(12), 7334. https://doi.org/10.3390/app13127334