Thermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycles
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. The sCO2 Partial-Cooling Cycle
2.2. The Solar Receiver
2.3. The Heliostat Field
2.4. The Comparative Analysis as Function of the Receiver Configuration
3. Results
3.1. Thermal and Optical Analysis of the Solar Thermal Power Plant as a Function of the Receiver Configuration
3.2. Economic Analysis of the Solar Thermal Power Plant as a Function of the Receiver Configuration
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IRENA. Renewable Power Generation Costs in 2021; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2022; ISBN 978-92-9260-452-3. [Google Scholar]
- Mehos, M.; Turchi, C.; Vidal, J.; Wagner, M.; Ma, Z.; Ho, C.; Kolb, W.; Andraka, C.; Kruizenga, A. Concentrating Solar Power Gen3 Demonstration Roadmap (No. NREL/TP-5500-67464, 1338899); National Renewable Energy laboratory: Golden, CO, USA, 2017. [Google Scholar] [CrossRef] [Green Version]
- Hesselgreaves, J.E. Compact Heat Exchangers: Selection, Design, and Operation, 2nd ed.; Elsevier/BH: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Turchi, C.S.; Vidal, J.; Bauer, M. Molten salt power towers operating at 600–650 °C: Salt selection and cost benefits. Sol. Energy 2018, 164, 38–46. [Google Scholar] [CrossRef]
- Ho, C. A review of high-temperature particle receivers for concentrating solar power. Appl. Therm. Eng. 2016, 109, 958–969. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Tourville, N.G.d.; Yadroitsev, I.; Yuan, X.; Flamant, G. Micro-channel pressurized-air solar receiver based on compact heat exchanger concept. Sol. Energy 2013, 91, 186–195. [Google Scholar] [CrossRef]
- De la Calle, A.; Bayon, A.; Pye, J. Techno-economic assessment of a high-efficiency, low-cost solar-thermal power system with sodium receiver, phase-change material storage, and supercritical CO2 recompression Brayton cycle. Sol. Energy 2020, 199, 885–900. [Google Scholar] [CrossRef]
- Ho, C.K.; Iverson, B.D. Review of high-temperature central receiver designs for concentrating solar power. Renew. Sustain. Energy Rev. 2014, 29, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Flamant, G.; Yuan, X.; Neveu, P.; Luo, L. Compact heat exchangers: A review and future applications for a new generation of high temperature solar receivers. Renew. Sustain. Energy Rev. 2011, 15, 4855–4875. [Google Scholar] [CrossRef]
- Dostal, V.A. Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors; Massachusetts Institute of Technology (MIT): Cambridge, MA, USA, 2004. [Google Scholar]
- Reyes-Belmonte, M.A.; Guédez, R.; Montes, M.J. Bibliometric Analysis on Supercritical CO2 Power Cycles for Concentrating Solar Power Applications. Entropy 2021, 23, 1289. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, Y.L.; Zhu, H.H. Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts. Appl. Energy 2017, 195, 819–836. [Google Scholar] [CrossRef]
- Neises, T.; Turchi, C. Supercritical carbon dioxide power cycle design and configuration optimization to minimize levelized cost of energy of molten salt power towers operating at 650 °C. Sol. Energy 2019, 181, 27–36. [Google Scholar] [CrossRef]
- Besarati, S.M.; Goswami, D.Y.; Stefanakos, E.K. Development of a Solar Receiver Based on Compact Heat Exchanger Technology for Supercritical Carbon Dioxide Power Cycles. J. Sol. Energy Eng. 2015, 137, 031018. [Google Scholar] [CrossRef]
- Sullivan, S.D.; Kesseli, J.; Nash, J.; Farias, J.; Kesseli, D.; Caruso, W. High-Efficiency Low-Cost Solar Receiver for Use Ina a Supercritical CO2 Recompression Cycle (No. DOE-BRAYTON--0005799, 1333813); Brayton Energy, LLC: Portsmouth, NH, USA, 2016. [Google Scholar] [CrossRef]
- Li, X.; Kininmont, D.; Le Pierces, R.; Dewson, S.J. Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers; American Nuclear Society—ANS: Downers Grove, IL, USA, 2008. [Google Scholar]
- Montes, M.J.; Rovira, A.; González-Aguilar, J.; Romero, M. Solar Receiver Consisting of Absorber Panels Based on Compact Structures. Spanish Patent ES2911108; PCT application n. PCT/ES2022/070705; Eu. application n. 2023/10572. Filed, 22 December 2021. [Google Scholar]
- Klein, S.A.; Nellis, G.F. Mastering EES, F-Chart Software, (versions 9.373 and newer) 63rd ed.; F-Chart Software LLC: Madison, WI, USA, 2022; Available online: http://www.fchartsoftware.com/ees/mastering-ees.php (accessed on 1 June 2023).
- Montes, M.J.; Linares, J.I.; Barbero, R.; Rovira, A. Proposal of a new design of source heat exchanger for the technical feasibility of solar thermal plants coupled to supercritical power cycles. Sol. Energy 2020, 211, 1027–1041. [Google Scholar] [CrossRef]
- D’Souza, D.; Montes, M.J.; Romero, M.; González-Aguilar, J. Energy and exergy analysis of microchannel central solar receivers for pressurised fluids. Appl. Therm. Eng. 2023, 219, 119638. [Google Scholar] [CrossRef]
- MATLAB & Simulink—MathWorks, 2022. Available online: https://matlab.mathworks.com (accessed on 1 June 2023).
- NIST Database. Available online: https://webbook.nist.gov/chemistry/ (accessed on 1 June 2023).
- Siegel, R.; Howell, J.R. Thermal Radiation Heat Transfer, 4th ed.; Taylor & Francis: New York, NY, USA, 2002. [Google Scholar]
- Siebers, D.; Kraabel, J. Estimating Convective Energy Losses from Solar Central Receivers (No. SAND-84-8717, 6906848, ON: DE84010919); Sandia National Laboratory: Livermore, CA, USA, 1984. [Google Scholar] [CrossRef]
- Montes, M.J.; D’Souza, D.; Linares, J.I.; González-Aguilar, J.; Rovira, A.; Romero, M. Proposal of a Microchannel Receiver for Pressurised Fluids Based on Different Compact Geometries. In Proceedings of the SOLARPACES 2022: International Conference on Concentrating Solar Power and Chemical Energy Systems, Albuquerque, NM, USA, 26–30 September 2022. [Google Scholar]
- Lei, N. The Thermal Characteristics of Multilayer Minichannel Heat Sinks in Single-Phase and Two-Phase Flow. Ph.D. Thesis, The University of Arizona (US), Tucson, AZ, USA, 2006. [Google Scholar]
- Wagner, M.J.; Wendelin, T. SolarPILOT: A power tower solar field layout and characterization tool. Sol. Energy 2018, 171, 185–196. [Google Scholar] [CrossRef]
- Wendelin, T. SolTRACE: A New Optical Modeling Tool for Concentrating Solar Optics. In Proceedings of the ISEC 2003: International Solar Energy Conference, Kohala Coast, HI, USA, 15–18 March 2003; American Society of Mechanical Engineers: New York, NY, USA, 2003. NREL Report No. CP-550-32866. pp. 253–260. [Google Scholar]
- Stalin Maria Jebamalai, J. Receiver Design Methodology for Solar Tower Power Plants. Master’s Thesis, KTH School of Industrial Engineering and Management, Stockholm, Sweden, 2016. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-192664 (accessed on 1 June 2023).
- Aligholami, M.; Khosroshahi, S.S.; Khosroshahi, A.R. Hydrodynamic and thermodynamic enhancement of a solar chimney power plant. Sol. Energy 2019, 191, 180–192. [Google Scholar] [CrossRef]
- Bejan, A.; Tsatsaronis, G.; Moran, M. Thermal Design & Optimization; Wiley: Hoboken, NJ, USA, 1996. [Google Scholar]
- Parrott, J.E. Theoretical upper limit to the conversion efficiency of solar energy. Sol. Energy 1978, 21, 227–229. [Google Scholar] [CrossRef]
- Short, W.; Packey, D.J.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; National Renewable Energy Laboratory: Golden, CO, USA, 2013; p. 1995. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Alghamdi, A.; Sansom, C.; Hart, P.; Encinas-Oropesa, A. A Through-Life Cost Analysis Model to Support Investment Decision-Making in Concentrated Solar Power Projects. Energies 2020, 13, 1553. [Google Scholar] [CrossRef] [Green Version]
- Schlaifer, P. Performance Calculations and Optimisation of a Fresnel Direct Steam Generation CSP Plant with Heat Storage. Ph.D. Thesis, KTH Industrial Engineering and Management, Stockholm, Sweden, 2012. [Google Scholar]
- Islam, T.; Huda, N.; Abdullah, A.B.; Saidur, R. A comprehensive review of state-of-the art concentrating solar power (CSP) technologies: Current status and research trends. Renew Sustain. Energy Rev. 2018, 91, 987–1018. [Google Scholar] [CrossRef]
- Energy Information Administration. Electric Power Annual 2023. Average Retail Price of Electricity to Ultimate Consumers by End-Use Sector. 2023. Available online: www.eia.doe.gov (accessed on 1 June 2023).
- Fleming, D.D.; Conboy, T.M.; Pasch, J.J.; Wright, S.A.; Rochau, G.E.; Fuller, R.L. Scaling Considerations for a Multi-Megawatt Class Supercritical CO2 Brayton Cycle and Commercialization; No. SAND2013-9106, 1111079; Sandia National Laboratory: Livermore, CA, USA, 2013. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.I.; Montes, M.J.; Cantizano, A.; Sánchez, C. A novel supercritical CO2 recompression Brayton power cycle for power tower concentrating solar plants. Appl. Energy 2020, 263, 114644. [Google Scholar] [CrossRef]
State Points | P (bar) | T (°C) | h (kJ/kg) |
---|---|---|---|
1 | 250 | 688 | 699.5 |
2 | 86.2 | 545.1 | 531.4 |
3 | 85.8 | 142.3 | 62.99 |
4 | 85.4 | 85.38 | −12.13 |
5 | 85 | 50 | −80.9 |
6 | 120.3 | 77.05 | −66.64 |
7 | 119.9 | 50 | −170.2 |
8 | 251.2 | 80.18 | −147.1 |
9 | 250.8 | 137.1 | −26.99 |
10 | 250.8 | 136.3 | −28.48 |
11 | 250.8 | 136.8 | −27.54 |
12 | 250.4 | 482.8 | 440.9 |
Cycle power (MWe) | 50 | ||
Source thermal power (MWth) | 103.42 | ||
Cycle efficiency (%) | 48.41 |
Convection Heat Transfer: | |
Correlation | Validity |
Nu = 4.089 | |
Pressure drop: | |
Correlation | Validity |
Symbol | Description | Expression |
---|---|---|
Rp,cond | Thermal resistance due to conduction through the wall thickness of the intermediate (frontal) plate | |
Rc,conv | Thermal resistance due to convection between the channel base and top surface | |
Rf,cond | Thermal resistance due to conduction through the fin half length | |
Rf,conv | Thermal resistance due to convection from the fin surface to the fluid | |
RHTF | Thermal resistance due to the fluid heat gain |
Heliostat Geometry and Focusing | |
---|---|
Structure width (m) × height (m) | 12.2 × 12.2 |
N. of horizontal panels | 2 |
N. of vertical panels | 8 |
Focusing type | At slant |
Optical error parameters | |
Elevation pointing error (rad) | 0 |
Azimuth pointing error (rad) | 0 |
Surface slope error in X/Y (mrad) | 1.53 |
Reflected beam error in X/Y (mrad) | 0.2 |
Mirror performance parameters | |
Reflective surface ratio | 0.97 |
Mirror reflectivity | 0.95 |
Soiling factor | 0.95 |
Global Receiver Parameters | |
---|---|
Thermal power (MWth) | 103.42 |
CO2 temperature at the receiver inlet (°C) | 494.8 |
CO2 temperature at the receiver outlet (°C) | 700 |
CO2 pressure at the receiver inlet (bar) | 55 |
Compact structure parameters | |
Pass 1 | |
Channel dimensions (mm × mm) | 10 × 10 |
Number of channel rows | 6 |
Plate thickness (mm) | 1 |
Frontal/back plate thickness (mm) | 1.5 |
Thickness between channels (mm) | 3 |
Average fluid velocity (m/s) | 15 |
Pass 2 | |
Channel Dimensions (mm × mm) | 5 × 5 |
Number of channel rows | 6 |
Plate thickness (mm) | 1 |
Frontal/back plate thickness (mm) | 1.5 |
Thickness between channels (mm) | 3 |
Average fluid velocity (m/s) | 30 |
Number of Panels | Panel Height (m) | Panel Width (m) | Heat Losses (kWth) | Pressure Drop (bar) |
---|---|---|---|---|
6 | 9.153 | 6.538 | 2231.465 | 5.531 |
7 | 7.886 | 5.633 | 1490.491 | 4.750 |
8 | 6.937 | 4.955 | 1066.124 | 4.159 |
9 | 6.202 | 4.430 | 806.335 | 3.700 |
10 | 5.618 | 4.013 | 636.138 | 3.343 |
11 | 5.138 | 3.670 | 520.657 | 3.046 |
12 | 4.739 | 3.385 | 436.343 | 2.798 |
14 | 4.0852 | 2.918 | 312.163 | 2.4 |
16 | 3.5756 | 2.554 | 234.591 | 2.102 |
Components | Total Capital Cost (Mio.$) |
---|---|
Primary heat exchanger | 9.141 |
Recuperators (LTR + HTR) | 20.7 |
Precooler CO2/Air | 11.8 |
Turbomachinery (TM) | 43 |
Power cycle | 84.641 |
Number of Converging Absorber Panels | |||||||||
---|---|---|---|---|---|---|---|---|---|
6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | |
Design parameters | |||||||||
Tower height (m) | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 | 109 |
Receiver absorber area (m2) | 718.123 | 621.922 | 549.965 | 494.547 | 450.917 | 414.842 | 384.996 | 333.777 | 292.227 |
Number of heliostats | 1243 | 1245 | 1259 | 1269 | 1294 | 1339 | 1401 | 1566 | 1869 |
Economic parameters | |||||||||
Tower cost (Mio. $) | 10.281 | 10.281 | 10.281 | 10.281 | 10.281 | 10.281 | 10.281 | 10.281 | 10.281 |
Receiver cost (Mio. $) | 59.546 | 53.843 | 49.402 | 45.863 | 42.991 | 40.554 | 38.489 | 34.828 | 31.733 |
Site improvements cost (Mio. $) | 2.871 | 2.875 | 2.910 | 2.930 | 2.989 | 3.093 | 3.236 | 3.617 | 4.317 |
Heliostat field cost (Mio. $) | 26.021 | 26.063 | 26.356 | 26.560 | 27.089 | 28.031 | 29.329 | 32.783 | 39.126 |
Contingency cost (Mio. $) | 4.210 | 4.052 | 4.620 | 4.355 | 4.18 | 4.069 | 4.031 | 4.115 | 4.46 |
Total direct cost (Mio. $) | 102.929 | 97.114 | 93.569 | 89.989 | 87.530 | 86.028 | 85.366 | 85.624 | 89.917 |
Land cost (Mio. $) | 2.842 | 2.812 | 2.930 | 2.876 | 2.889 | 2.956 | 3.075 | 3.443 | 4.314 |
Sales tax cost (Mio. $) | 2.574 | 2.477 | 2.940 | 2.778 | 2.671 | 2.606 | 2.59 | 2.654 | 2.899 |
Total indirect cost (Mio. $) | 5.416 | 5.289 | 5.870 | 5.654 | 5.560 | 5.562 | 5.665 | 6.097 | 7.213 |
Total capital cost (Mio. $) | 108.345 | 102.403 | 99.439 | 95.643 | 93.090 | 91.590 | 91.031 | 91.721 | 97.130 |
Number of Converging Absorber Panels | |||||||||
---|---|---|---|---|---|---|---|---|---|
6 | 7 | 8 | 9 | 10 | 11 | 12 | 14 | 16 | |
Solar subsystem TCC (Mio.$) | 108.345 | 102.403 | 99.439 | 95.643 | 93.090 | 91.590 | 91.031 | 91.721 | 97.130 |
Power cycle TCC (Mio.$) | 84.641 | 84.641 | 84.641 | 84.641 | 84.641 | 84.641 | 84.641 | 84.641 | 84.641 |
Annual electricity production (GWhe) | 109.5 | 109.5 | 109.5 | 109.5 | 109.5 | 109.5 | 109.5 | 109.5 | 109.5 |
Payback period (PB) (years) | 11.916 | 11.549 | 11.366 | 11.132 | 10.974 | 10.882 | 10.847 | 10.890 | 11.224 |
Levelised Cost of Energy (LCOE) ($/kWhe) | 0.178 | 0.150 | 0.148 | 0.145 | 0.143 | 0.142 | 0.141 | 0.142 | 0.146 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, M.J.; Guedez, R.; D’Souza, D.; Linares, J.I. Thermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycles. Appl. Sci. 2023, 13, 7836. https://doi.org/10.3390/app13137836
Montes MJ, Guedez R, D’Souza D, Linares JI. Thermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycles. Applied Sciences. 2023; 13(13):7836. https://doi.org/10.3390/app13137836
Chicago/Turabian StyleMontes, María José, Rafael Guedez, David D’Souza, and José Ignacio Linares. 2023. "Thermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycles" Applied Sciences 13, no. 13: 7836. https://doi.org/10.3390/app13137836
APA StyleMontes, M. J., Guedez, R., D’Souza, D., & Linares, J. I. (2023). Thermoeconomic Analysis of Concentrated Solar Power Plants Based on Supercritical Power Cycles. Applied Sciences, 13(13), 7836. https://doi.org/10.3390/app13137836