AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds
Abstract
:1. Introduction
2. AIQS-DB Application
3. Summary of AIQS Mechanisms and Instrumental Conditions
4. Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kadokami, K.; Tanada, K.; Taneda, K.; Nakagawa, K. Novel gas chromatography–mass spectrometry database for automatic identification and quantification of micropollutants. J. Chromatogr. A 2005, 1089, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Li, W.-M.; Li, X.-H.; Cai, X.-Y.; Chen, J.-W.; Qiao, X.-L.; Kiwao, K.; Daisuke, J.; Toyomi, I. Application of automated identification and quantification system with a database (AIQS-DB) to screen organic pollutants in surface waters from Yellow River and Yangtze River. Huan Jing Ke Xue 2010, 31, 2627–2632. [Google Scholar] [PubMed]
- Allinson, M.; Cassidy, M.; Kadokami, K.; Besley, C. In situ calibration of passive sampling methods for urban micropollutants using targeted multiresidue GC and LC screening systems. Chemosphere 2023, 311, 136997. [Google Scholar] [CrossRef]
- Škrbić, B.D.; Kadokami, K.; Antić, I. Survey on the micro-pollutants presence in surface water system of northern Serbia and environmental and health risk assessment. Environ. Res. 2018, 166, 130–140. [Google Scholar] [CrossRef]
- Chau, H.T.C.; Kadokami, K.; Duong, H.T.; Kong, L.; Nguyen, T.T.; Ito, Y. Occurrence of 1153 organic micropollutants in the aquatic environment of Vietnam. Environ. Sci. Pollut. Res. 2018, 25, 7147–7156. [Google Scholar] [CrossRef]
- Kadokami, K.; Miyawaki, T.; Takagi, S.; Iwabuchi, K.; Towatari, H.; Yoshino, T.; Yagi, M.; Aita, Y.; Ito, T.; Takemine, S.; et al. Novel automated identification and quantification database using liquid chromatography quadrupole time-of-flight mass spectrometry for quick, comprehensive, cheap and extendable organic micro-pollutant analysis in environmental systems. Anal. Chim. Acta 2023, 1238, 340656. [Google Scholar] [CrossRef]
- Duong, H.T.; Kadokami, K.; Chau, H.T.C.; Nguyen, T.Q.; Nguyen, T.T.; Kong, L. Groundwater screening for 940 organic micro-pollutants in Hanoi and Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2015, 22, 19835–19847. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Kadokami, K.; Duong, H.T.; Chau, H.T.C. Screening of 1300 organic micro-pollutants in groundwater from Beijing and Tianjin, North China. Chemosphere 2016, 165, 221–230. [Google Scholar] [CrossRef]
- Li, X.; Shang, X.; Luo, T.; Du, X.; Wang, Y.; Xie, Q.; Matsuura, N.; Chen, J.; Kadokami, K. Screening and health risk of organic micropollutants in rural groundwater of Liaodong Peninsula, China. Environ. Pollut. 2016, 218, 739–748. [Google Scholar] [CrossRef]
- Kadokami, K.; Li, X.; Pan, S.; Ueda, N.; Hamada, K.; Jinya, D.; Iwamura, T. Screening analysis of hundreds of sediment pollutants and evaluation of their effects on benthic organisms in Dokai Bay, Japan. Chemosphere 2013, 90, 721–728. [Google Scholar] [CrossRef]
- Kadokami, K.; Pan, S.; Hanh, D.T.; Li, X.; Miyazaki, T. Development of a Comprehensive Analytical Method for Semi-Volatile Organic Compounds in Sediments by Using an Automated Identification and Quantification System with a GC-MS Database. Anal. Sci. 2012, 28, 1183–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, S.; Kadokami, K.; Li, X.; Duong, H.T.; Horiguchi, T. Target and screening analysis of 940 micro-pollutants in sediments in Tokyo Bay, Japan. Chemosphere 2014, 99, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Allinson, M.; Kadokami, K.; Shiraishi, F.; Nakajima, D.; Zhang, J.; Knight, A.; Gray, S.; Scales, P. Wastewater recycling in Antarctica: Performance assessment of an advanced water treatment plant in removing trace organic chemicals. J. Environ. Manag. 2018, 224, 122–129. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Z.; Huo, Y.B.; Yang, M.; Zheng, X.C.; Zhang, Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018, 67, 309–317. [Google Scholar] [CrossRef]
- Kadokami, K.; Ueno, D. Comprehensive Target Analysis for 484 Organic Micropollutants in Environmental Waters by the Combination of Tandem Solid-Phase Extraction and Quadrupole Time-of-Flight Mass Spectrometry with Sequential Window Acquisition of All Theoretical Fragment-Ion Spectra Acquisition. Anal. Chem. 2019, 91, 7749–7755. [Google Scholar] [CrossRef]
- Le-Quang, H.; Phuong, T.P.T.; Bui-Quang, M.; Nguyen-Tien, D.; Nguyen-Thanh, T.; Nguyen-Ha, M.; Shimadera, H.; Kondo, A.; Luong-Viet, M.; Nguyen-Quang, T. Comprehensive Analysis of Organic Micropollutants in Fine Particulate Matter in Hanoi Metropolitan Area, Vietnam. Atmosphere 2022, 13, 2088. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Kadokami, K.; Ching, K.Y.; Xu, S.; Hu, G.; Wang, J. Distribution and health risks of organic micropollutants from home dusts in Malaysia. Chemosphere 2022, 309, 136600. [Google Scholar] [CrossRef]
- Dong, X.; Yang, C.; Zhang, R.; Tao, S.; Han, W.; Wang, Y.; Xie, Q.; Chen, J.; Li, X. Occurrence, exposure and risk assessment of semi-volatile organic compounds in Chinese homes. Environ. Pollut. 2022, 307, 119550. [Google Scholar] [CrossRef]
- Omagari, R.; Nakayama, T.; Miyawaki, T.; Yagishita, M.; Hashimoto, S.; Kadokami, K.; Nakajima, D. Evaluation of identification accuracy using AIQS for GC-MS for measuring heavily contaminated samples. Chemosphere 2021, 285, 131401. [Google Scholar] [CrossRef]
- Omagari, R.; Miyabara, Y.; Hashimoto, S.; Miyawaki, T.; Toyota, M.; Kadokami, K.; Nakajima, D. The rapid survey method of chemical contamination in floods caused by Typhoon Hagibis by combining in vitro bioassay and comprehensive analysis. Environ. Int. 2022, 159, 107017. [Google Scholar] [CrossRef] [PubMed]
- Nishimuta, K.; Ueno, D.; Takahashi, S.; Kuwae, M.; Kadokami, K.; Miyawaki, T.; Matsukami, H.; Kuramochi, H.; Higuchi, T.; Koga, Y.; et al. Use of comprehensive target analysis for determination of contaminants of emerging concern in a sediment core collected from Beppu Bay, Japan. Environ. Pollut. 2021, 272, 115587. [Google Scholar] [CrossRef]
- Tazunoki, Y.; Tokuda, M.; Sakuma, A.; Nishimuta, K.; Oba, Y.; Kadokami, K.; Miyawaki, T.; Ikegami, M.; Ueno, D. Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan. Environ. Pollut. 2022, 292, 118334. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Miyawaki, T.; Kadokami, K.; Nakai, K.; Tatsuta, N.; Nakata, H.; Matsumura, T.; Nagasaka, H.; Nakamura, M.; Sato, K.; et al. Development of a novel scheme for rapid screening for environmental micropollutants in emergency situations (REPE) and its application for comprehensive analysis of tsunami sediments deposited by the great east Japan earthquake. Chemosphere 2019, 224, 39–47. [Google Scholar] [CrossRef]
- Miyawaki, T.; Nishino, T.; Asakawa, D.; Haga, Y.; Hasegawa, H.; Kadokami, K. Development of a rapid and comprehensive method for identifying organic micropollutants with high ecological risk to the aquatic environment. Chemosphere 2021, 263, 128258. [Google Scholar] [CrossRef] [PubMed]
- Pang, H.; Zhang, J.; Allinson, M.; Gray, S.; Scales, P.J. A chemical credit framework to predict the removal performance of organic chemicals of concern from water through an ozonation process. Water Res. 2023, 232, 119671. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Kadokami, K. Occurrence and exposure risk assessment of organic micropollutants in indoor dust from Malaysia. Chemosphere 2022, 287, 132340. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Zhao, J.; Yang, C.; Liu, Y.; Yang, J.; Qi, X.; Li, Z.; Shao, Z.; Wang, S.; Ji, M.; et al. Integrated estrogenic effects and semi-volatile organic pollutants profile in secondary and tertiary wastewater treatment effluents in North China. J. Hazard. Mater. 2022, 435, 128984. [Google Scholar] [CrossRef]
- Duong, H.T.; Doan, N.H.; Trinh, H.T.; Kadokami, K. Occurrence and risk assessment of herbicides and fungicides in atmospheric particulate matter in Hanoi, Vietnam. Sci. Total. Environ. 2021, 787, 147674. [Google Scholar] [CrossRef]
- Doan, N.H.; Duong, H.T.; Trinh, H.T.; Tanaka, Y.; Kadokami, K. Comprehensive study of insecticides in atmospheric particulate matter in Hanoi, Vietnam: Occurrences and human risk assessment. Chemosphere 2021, 262, 128028. [Google Scholar] [CrossRef]
- Lee, H.-J.; Kadokami, K.; Oh, J.-E. Occurrences of microorganic pollutants in the Kumho River by a comprehensive target analysis using LC-Q/TOF-MS with sequential window acquisition of all theoretical fragment ion spectra (SWATH). Sci. Total. Environ. 2020, 713, 136508. [Google Scholar] [CrossRef]
- Anh, H.Q.; Tomioka, K.; Tue, N.M.; Suzuki, G.; Minh, T.B.; Viet, P.H.; Takahashi, S. Comprehensive analysis of 942 organic micro-pollutants in settled dusts from northern Vietnam: Pollution status and implications for human exposure. J. Mater. Cycles Waste Manag. 2019, 21, 57–66. [Google Scholar] [CrossRef]
- Duong, H.T.; Kadokami, K.; Trinh, H.T.; Phan, T.Q.; Le, G.T.; Nguyen, D.T.; Nguyen, T.T.; Nguyen, D.T. Target screening analysis of 970 semi-volatile organic compounds adsorbed on atmospheric particulate matter in Hanoi, Vietnam. Chemosphere 2019, 219, 784–795. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Tomioka, K.; Tue, N.M.; Tuyen, L.H.; Chi, N.K.; Minh, T.B.; Viet, P.H.; Takahashi, S. A preliminary investigation of 942 organic micro-pollutants in the atmosphere in waste processing and urban areas, northern Vietnam: Levels, potential sources, and risk assessment. Ecotoxicol. Environ. Saf. 2019, 167, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.Q.; Tran, T.M.; Thuy, N.T.T.; Minh, T.B.; Takahashi, S. Screening analysis of organic micro-pollutants in road dusts from some areas in northern Vietnam: A preliminary investigation on contamination status, potential sources, human exposure, and ecological risk. Chemosphere 2019, 224, 428–436. [Google Scholar] [CrossRef]
- Miyawaki, T.; Tobiishi, K.; Takenaka, S.; Kadokami, K. A Rapid Method, Combining Microwave-Assisted Extraction and Gas Chromatography-Mass Spectrometry with a Database, for Determining Organochlorine Pesticides and Polycyclic Aromatic Hydrocarbons in Soils and Sediments. Soil Sediment Contam. Int. J. 2018, 27, 31–45. [Google Scholar] [CrossRef]
- Trinh, H.T.; Marcussen, H.; Hansen, H.C.B.; Le, G.T.; Duong, H.T.; Ta, N.T.; Nguyen, T.Q.; Hansen, S.; Strobel, B.W. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam. Environ. Sci. Pollut. Res. 2017, 24, 7348–7358. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Kadokami, K.; Wang, S.; Duong, H.T.; Chau, H.T.C. Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin, North China. Chemosphere 2015, 122, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Duong, H.T.; Kadokami, K.; Pan, S.; Matsuura, N.; Nguyen, T.Q. Screening and analysis of 940 organic micro-pollutants in river sediments in Vietnam using an automated identification and quantification database system for GC–MS. Chemosphere 2014, 107, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Zhe, T.; Yu, Z.; Hongying, Y.; Yingbin, H.; Min, Y.; Fusheng, T.; Dianhai, L. Application of automated identification and quantification system with a database (AIQS-DB) to evaluate removal efficiency of organic micropollutants by two wastewater reclamation processes. Chin. J. Environ. Eng. 2014, 8, 2677–2684. [Google Scholar]
- Miyazaki, T.; Kadokami, K.; Sonoda, Y.; Jinya, D.; Yamagami, T.; Toubou, K.; Ogawa, H. Reproducibility of Measurement Results by Automated Identification and Quantification System with Database for GC/MS. Bunseki Kagaku Abstr. 2011, 60, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Kadokami, K.; Jinya, D.; Iwamura, T. Survey on 882 Organic Micro-Pollutants in Rivers throughout Japan by Automated Identification and Quantification System with a Gas Chromatography-Mass Spectrometry Database. J. Environ. Chem. 2009, 19, 351–360. [Google Scholar] [CrossRef] [Green Version]
Year | Instrument | Compound Number | Matrix | Main Objective | Ref. |
---|---|---|---|---|---|
2023 | GC/MS | 58/949 | Wastewater, treated water | Assessment of the influencing factors of ozonation performance in removing CoC in a wastewater discharge | [25] |
2023 | LC-QTOF-MS | 125/484 | River water | Analytical method development for LC-QTOF-MS | [6] |
2023 | GC/MS; LC/QTOF-MS | 144/969; 69/421 | River water | Development of AIQS-DB for passive sampling as CC and POCIS | [3] |
2022 | GC/MS | 288/N.a | PM 2.5 | Comprehensive analysis | [16] |
2022 | LC-QTOF-MS | 57/508 | Indoor dust | Comprehensive analysis and health risk assessment | [26] |
2022 | GC/MS | 97/886 | Indoor air and dust samples | Comprehensive analysis and health risk assessment | [18] |
2022 | GC/MS; LC/MS | 133/969 | Dust samples | Comprehensive analysis and health risk assessment | [17] |
2022 | GC/MS | 32/886 | Wastewater treatment effluent | Profiling of organic pollutants | [27] |
2022 | GC/MS | 109/~1000 | Flood sediment or soil samples | Risk assessment | [20] |
2022 | LC-QTOF-MS | 20/296 pesticides | Surface water samples in agriculture area | Comprehensive and agrochemical analysis | [22] |
2021 | LC-QTOF-MS | 22/187 | Particle samples | Risk assessment | [28] |
2021 | GC/MS; LC/QTOF-MS | 78/970 2/501 | Sediment | Comprehensive analysis | [21] |
2021 | LC-QTOF-MS | 19/107 | Particle samples | Comprehensive analysis and risk assessment | [29] |
2021 | GC/MS; LC/QTOF-MS | 474/970 | Wastewater eluted by fire extinguishing activities and river water | Comparison with GC-QTofMS | [19] |
2021 | GC/MS | 136/948 | River water | Analytical method development | [18] |
2021 | GC/MS; LC/QTOF-MS | 131/948 311 | River water | Screening and ecological risk | [22] |
2020 | LC-Q/TOF-MS | 85/484 | River water | Comprehensive survey | [30] |
2019 | GC/MS | 195/942 | Indoor dust | Comprehensive analysis | [31] |
2019 | GC/MS | 118/970 | Particle samples | Target screening analysis | [32] |
2019 | GC/MS | 167/942 | Passive air sampling | Comprehensive analysis and health risk assessment | [33] |
2019 | GC/MS | 105/942 | Road dust samples | Comprehensive analysis and health risk assessment | [34] |
2019 | LC-Q/TOF-MS | 201/484 | Wastewater of a sewage treatment plant | Comprehensive target analysis | [15] |
2019 | GC/MS | 63/937 | Tsunami sediment samples | Comprehensive screening and risk assessment | [23] |
2018 | GC/MS | 127/940 | Surface river water | Comprehensive screening and risk assessment | [4] |
2018 | GC/MS; LC/QTOF-MS | 165/1153 | River water | Comprehensive screening and risk assessment | [5] |
2018 | GC/MS | 196/943 | Municipal wastewater | Comprehensive analysis | [14] |
2018 | GC-MS LC-MS | 109/1250 | Wastewater | Assessment of the efficiency of wastewater treatment system | [13] |
2018 | GC-MS | Used for only PAH and OCP | Soils and sediments | Analytical method development | [35] |
2017 | GC-MS | 277/940 | Floodwater | Comprehensive analysis | [36] |
2016 | GC-MS LC-MS | 78/1300 | Groundwater | Comprehensive screening | [8] |
2016 | GC-MS LC/QTOF-MS LC-MS | 80/1300 | Groundwater | Comprehensive screening | [9] |
2015 | GC-MS LC-MS | 227/1300 | River water | Water monitoring | [37] |
2015 | GC-MS | 74/940 | Groundwater | Comprehensive screening | [7] |
2014 | GC-MS | 185/940 | River sediment | Comprehensive screening | [38] |
2014 | GC-MS | 195/940 | Sediment | Comprehensive screening | [12] |
2014 | GC-MS | 95/940 | River water | Comprehensive screening | [39] |
2013 | GC-MS | 184/888 | Sediment | Comprehensive screening | [10] |
2012 | GC-MS | 914 | Sediment | Analytical method development | [11] |
2011 | GC-MS | 114 | N.a. | Verification of analytical method | [40] |
2010 | GC-MS | 95/940 | River water | Comprehensive screening | [2] |
2009 | GC-MS | 188/882 | River water | Comprehensive screening | [41] |
2005 | GC-MS | 13/672 | River water | Analytical method development | [1] |
56/672 | Soil | ||||
150/672 | Spinach | ||||
150/672 | Orange |
Item | GC-MS Specification [1,21,22] | LC-TOF-MS Specification [6,21] |
---|---|---|
Company | Shimadzu | Sciex, Agilent, Shimadzu |
Column | DB-5 MS (30 × 0.25 × 0.25) | ODS (2.1 × 150 × 3) at 40 °C |
Temperature program/gradient | 2 min at 40 °C, 8 °C/min to 310 °C, 5 min at 310 °C; | A95:B5 (0′)–A5:B95 (30′–50′) Flow Rate: 0.3 mL/min |
Injection: | 250 °C/splitless | |
Transfer line | 300 °C | |
Ion source | 200 °C | |
Carrier gas/mobile phase | He | H2O (A): CH3OH (B) + 5 mmol CH3COONH4 |
Linear velocity | 40 cm/s, constant | |
Ionization | EI | ESI-Positive at 3500 V |
Mode | SIM/SCAN (400–600 aum) | SCAN (m/z 50–1000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bui, Q.M.; Nguyen, H.N.M.; Le, V.N.; Nguyen, T.T.; Truong, N.M.; Nguyen, N.T.; Le, Q.H.; Nguyen, Q.T. AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds. Appl. Sci. 2023, 13, 8031. https://doi.org/10.3390/app13148031
Bui QM, Nguyen HNM, Le VN, Nguyen TT, Truong NM, Nguyen NT, Le QH, Nguyen QT. AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds. Applied Sciences. 2023; 13(14):8031. https://doi.org/10.3390/app13148031
Chicago/Turabian StyleBui, Quang Minh, Huynh Nhat Minh Nguyen, Van Nhan Le, Thanh Thao Nguyen, Ngoc Minh Truong, Ngoc Tung Nguyen, Quang Huong Le, and Quang Trung Nguyen. 2023. "AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds" Applied Sciences 13, no. 14: 8031. https://doi.org/10.3390/app13148031
APA StyleBui, Q. M., Nguyen, H. N. M., Le, V. N., Nguyen, T. T., Truong, N. M., Nguyen, N. T., Le, Q. H., & Nguyen, Q. T. (2023). AIQS-DB: Revolutionizing the Simultaneous Analysis of Organic Compounds. Applied Sciences, 13(14), 8031. https://doi.org/10.3390/app13148031