Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel
Abstract
:1. Introduction
2. Literature Review
2.1. Experimental Simulation of Thunderstorm Downbursts
2.2. Mean Wind Velocity
2.3. Turbulence Properties
3. Experimental Setup
4. Results and Discussion
4.1. Mean Wind Velocity Profile
4.2. Turbulence Intensity Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujita, T. The Downburst: Microburst and Microburst; University of Chicago: Chicago, IL, USA, 1985. [Google Scholar]
- Canepa, F.; Burlando, M.; Solari, G. Vertical profile characteristics of thunderstorm outflows. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104332. [Google Scholar] [CrossRef]
- Solari, G.; Burlando, M.; Repetto, M.P. Detection, simulation, modelling and loading of thunderstorm outflows to design wind-safer and cost-efficient structures. J. Wind Eng. Ind. Aerodyn. 2020, 200, 104142. [Google Scholar] [CrossRef]
- Solari, G. Thunderstorm Downbursts and Wind Loading of Structures: Progress and Prospect. Front. Built Environ. 2020, 6, 63. [Google Scholar] [CrossRef]
- Hjelmfelt, M.R. Structure and Life Cycle of Microburst Outflows Observed in Colorado. J. Appl. Meteorol. 1988, 27, 900–927. [Google Scholar] [CrossRef]
- Wood, G.S.; Kwok, K.C.; Motteram, N.A.; Fletcher, D.F. Physical and numerical modelling of thunderstorm downbursts. J. Wind Eng. Ind. Aerodyn. 2001, 89, 535–552. [Google Scholar] [CrossRef]
- Romanic, D.; Parvu, D.; Hangan, H. Downburst reconstruction using physical simulation and analytical model with application to urban environments. In Proceedings of the International Conference on Urban Physics, Quito-Gálapagos, Ecuador, 26–30 September 2016. [Google Scholar] [CrossRef]
- Zhang, Y.; Sarkar, P.; Hu, H. An experimental study on wind loads acting on a high-rise building model induced by microburst-like winds. J. Fluids Struct. 2014, 50, 547–564. [Google Scholar] [CrossRef]
- Irwin, P.A. Wind engineering challenges of the new generation of super-tall buildings. J. Wind Eng. Ind. Aerodyn. 2009, 97, 328–334. [Google Scholar] [CrossRef]
- Canepa, F.; Burlando, M.; Romanic, D.; Solari, G.; Hangan, H. Experimental investigation of the near-surface flow dynamics in downburst-like impinging jets. Environ. Fluid Mech. 2022, 22, 921–954. [Google Scholar] [CrossRef]
- Aboutabikh, M.; Ghazal, T.; Chen, J.; Elgamal, S.; Aboshosha, H. Designing a blade-system to generate downburst outflows at boundary layer wind tunnel. J. Wind Eng. Ind. Aerodyn. 2019, 186, 169–191. [Google Scholar] [CrossRef]
- Le, V.; Caracoglia, L. Generation and characterization of a non-stationary flow field in a small-scale wind tunnel using a multi-blade flow device. J. Wind Eng. Ind. Aerodyn. 2019, 186, 1–16. [Google Scholar] [CrossRef]
- Butler, K.; Cao, S.; Kareem, A.; Tamura, Y.; Ozono, S. Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field. J. Wind Eng. Ind. Aerodyn. 2010, 98, 299–316. [Google Scholar] [CrossRef]
- Mason, M.S.; Lo, Y. Wind loading of the CAARC building during velocity profile transitions, Part 1: Transient pressure coefficient distributions. In Proceedings of the 15th International Conference on Wind Engineering, Beijing, China, 16 September 2019; pp. 829–830. [Google Scholar]
- Burlando, M.; Romanic, D. Groundbreaking contributions to downburst monitoring, modeling, and detection. In The Oxford Handbook of Non-Synoptic Wind Storms; Hangan, H., Kareem, A., Eds.; Oxford University Press: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Jubayer, C.; Elatar, A.; Hangan, H. Pressure distributions on a low-rise building in a laboratory simulated downburst. In Proceedings of the 8th International Colloquium on Bluff Body Aerodynamics and Applications Northeastern University, Boston, MA, USA, 7–11 June 2016. [Google Scholar]
- Letchford, C.; Chay, M. Pressure distributions on a cube in a simulated thunderstorm downburst. Part B: Moving downburst observations. J. Wind Eng. Ind. Aerodyn. 2002, 90, 733–753. [Google Scholar] [CrossRef]
- Asano, K.; Iida, Y.; Uematsu, Y. Laboratory study of wind loads on a low-rise building in a downburst using a moving pulsed jet simulator and their comparison with other types of simulators. J. Wind Eng. Ind. Aerodyn. 2019, 184, 313–320. [Google Scholar] [CrossRef]
- Canepa, F.; Burlando, M.; Hangan, H.; Romanic, D. Experimental Investigation of the Near-Surface Flow Dynamics in Downburst-like Impinging Jets Immersed in ABL-like Winds. Atmosphere 2022, 13, 621. [Google Scholar] [CrossRef]
- Romanic, D.; Ballestracci, A.; Canepa, F.; Solari, G.; Hangan, H. Aerodynamic coefficients and pressure distribution on two circular cylinders with free end immersed in experimentally produced downburst-like outflows. Adv. Struct. Eng. 2020, 24, 522–538. [Google Scholar] [CrossRef]
- Butler, K.; Kareem, A. Physical and numerical modeling of downburst generated gust fronts. In Proceedings of the 12th International Conference on Wind Engineering, Cairns, Australia, 2–6 July 2007. [Google Scholar]
- Mejia, A.; Vutukuru, K.; Elawady, A.; Chowdhury, A.; Irwin, P. Downburst simulations at The NHERI Wall of Wind experimental facility. In Proceedings of the 15th International Conference on Wind Engineering, Bejing, China, 1–6 September 2019. [Google Scholar]
- Levieux, G.; Elawady, A.; Chowdhury, A.; Aloui, F. 2D Numerical simulation of downburst simulator in the Wall of Wind. In Energy and Exergy for Sustainable and Clean Environment; Geo, V.E., Aloui, F., Eds.; Springer Nature Singapore: Singapore, 2023; Volume 2. [Google Scholar]
- Alawode, K.; Elawady, A.; Shafieezadeh, A.; Chowdhury, A.; Azzi, Z. Aerolastic testing to examine the dynamic behavior of a single self-supported electrical transmission tower subjected to downburst wind loads. In Proceedings of the 14th Americas Conference on Wind Engineering, Lubbock, TX, USA, 17–19 May 2022. [Google Scholar]
- Zhao, Y.; Cao, S.; Tamura, Y.; Duan, Z.; Ozono, S. Simulation of downburst in a multiple fan wind tunnel and research on its load on high-rise structure by wind tunnel experiment. In Proceedings of the International Conference on Mechatronics and Automaion, Changchun, China, 9–12 August 2009. [Google Scholar]
- Ma, R.; Zhou, Q.; Wang, P.; Yang, Y.; Li, M.; Cao, S. Effects of sinusoidal streamwise gust on the vortex-induced force on an oscillating 5:1 rectangular cylinder. J. Wind Eng. Ind. Aerodyn. 2021, 213, 104642. [Google Scholar] [CrossRef]
- Li, S.; Snaiki, R.; Wu, T. Active Simulation of Transient Wind Field in a Multiple-Fan Wind Tunnel via Deep Reinforcement Learning. J. Eng. Mech. 2021, 147, 04021056. [Google Scholar] [CrossRef]
- Zhang, S.; Solari, G.; Burlando, M.; Yang, Q. Directional decomposition and properties of thunderstorm outflows. J. Wind Eng. Ind. Aerodyn. 2019, 189, 71–90. [Google Scholar] [CrossRef]
- Tubino, F.; Solari, G. Time varying mean extraction for stationary and nonstationary winds. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104187. [Google Scholar] [CrossRef]
- Brusco, S.; Buresti, G.; Piccardo, G. Thunderstorm-induced mean wind velocities and accelerations through the continuous wavelet transform. J. Wind Eng. Ind. Aerodyn. 2022, 221, 104886. [Google Scholar] [CrossRef]
- Le, T.-H.; Caracoglia, L. Computer-based model for the transient dynamics of a tall building during digitally simulated Andrews AFB thunderstorm. Comput. Struct. 2017, 193, 44–72. [Google Scholar] [CrossRef]
- Chay, M.; Albermani, F.; Wilson, R. Numerical and analytical simulation of downburst wind loads. Eng. Struct. 2006, 28, 240–254. [Google Scholar] [CrossRef] [Green Version]
- Xhelaj, A.; Burlando, M.; Solari, G. A general-purpose analytical model for reconstructing the thunderstorm outflows of travelling downbursts immersed in ABL flows. J. Wind Eng. Ind. Aerodyn. 2020, 207, 104373. [Google Scholar] [CrossRef]
- Oseguera, R.M.; Bowles, R.L. A Simple, Analytic 3-Dimensional Downburst Model Based on Boundary Layer Stagnation Flow; NASA Technical Memorandum 100632; NASA: Hampton, VA, USA, 1988. [Google Scholar]
- Vicroy, D.D. Assessment of microburst models for downdraft estimation. J. Aircr. 1992, 29, 1043–1048. [Google Scholar] [CrossRef]
- Wood, S.; Kwok, K. An empirically derived estimate for the mean velocity profile of a thunderstorm downburst. In Proceedings of the 7th Australian Wind Engineering Society Workshop, Auckland, New Zealand, 28–29 September 1998. [Google Scholar]
- Sengupta, A.; Sarkar, P.P. Experimental measurement and numerical simulation of an impinging jet with application to thunderstorm microburst winds. J. Wind Eng. Ind. Aerodyn. 2008, 96, 345–365. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Xiao, Y.; Ou, J. A revised empirical model and CFD simulations for 3D axisymmetric steady-state flows of downbursts and impinging jets. J. Wind Eng. Ind. Aerodyn. 2012, 102, 48–60. [Google Scholar] [CrossRef]
- Abd-Elaal, E.-S.; Mills, J.E.; Ma, X. An analytical model for simulating steady state flows of downburst. J. Wind Eng. Ind. Aerodyn. 2013, 115, 53–64. [Google Scholar] [CrossRef]
- Kim, J.; Hangan, H. Numerical simulations of impinging jets with application to downbursts. J. Wind Eng. Ind. Aerodyn. 2007, 95, 279–298. [Google Scholar] [CrossRef]
- Durañona, V.; Sterling, M.; Baker, C. An analysis of extreme non-synoptic winds. J. Wind Eng. Ind. Aerodyn. 2007, 95, 1007–1027. [Google Scholar] [CrossRef]
- Solari, G.; Burlando, M.; De Gaetano, P.; Repetto, M.P. Characteristics of thunderstorms relevant to the wind loading of structures. Wind Struct. 2015, 20, 763–791. [Google Scholar] [CrossRef]
- Choi, E.C. Wind characteristics of tropical thunderstorms. J. Wind Eng. Ind. Aerodyn. 2000, 84, 215–226. [Google Scholar] [CrossRef]
- Romanic, D. Mean flow and turbulence characteristics of a nocturnal downburst recorded on a 213 m tall meteorological tower. J. Atmos. Sci. 2021, 78, 3629–3650. [Google Scholar] [CrossRef]
- Elawady, A.; Aboshosha, H.; El Damatty, A.; Bitsuamlak, G.; Hangan, H.; Elatar, A. Aero-elastic testing of multi-spanned transmission line subjected to downbursts. J. Wind Eng. Ind. Aerodyn. 2017, 169, 194–216. [Google Scholar] [CrossRef]
- Roncallo, L.; Solari, G. An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records. J. Wind Eng. Ind. Aerodyn. 2020, 203, 104204. [Google Scholar] [CrossRef]
- Aurelius, L.; Buttgereit, V.; Cammelli, S.; Zanina, M. The impact of Shamal winds on tall building design in the Gulf Region. In Proceedings of the International Conference on Tall Buildings: Architectural and Structural Advances, ACI, Abu Dhabi, United Arab Emirates, 6 February–5 April 2008. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldereguía Sánchez, C.; Tubino, F.; Bagnara, A.; Piccardo, G. Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel. Appl. Sci. 2023, 13, 8064. https://doi.org/10.3390/app13148064
Aldereguía Sánchez C, Tubino F, Bagnara A, Piccardo G. Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel. Applied Sciences. 2023; 13(14):8064. https://doi.org/10.3390/app13148064
Chicago/Turabian StyleAldereguía Sánchez, Camila, Federica Tubino, Anna Bagnara, and Giuseppe Piccardo. 2023. "Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel" Applied Sciences 13, no. 14: 8064. https://doi.org/10.3390/app13148064
APA StyleAldereguía Sánchez, C., Tubino, F., Bagnara, A., & Piccardo, G. (2023). Experimental Simulation of Thunderstorm Profiles in an Atmospheric Boundary Layer Wind Tunnel. Applied Sciences, 13(14), 8064. https://doi.org/10.3390/app13148064