Energy Management Capability in the Reconfigurable Distribution Networks with Distributed Generation for Minimization of Energy Loss
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Research Gaps
- To enhance network operation, including reducing energy losses, voltage profile, and other cases, there are various solutions such as energy management of local resources and system reconfiguration. Yet, it is predicted that the use of several different solutions can achieve a favorable operating situation, which has been stated in fewer studies.
- In addition, there are various indices for system operation, for which in most studies, only the bus voltage limit and the capacity of the distribution lines are considered.
- Furthermore, the minimization of energy losses has been considered in fewer studies although there are various indices regarding the network operation, and different indices may not be correlated with each other, meaning that improving a given index may not help the improvement of other index/indices. Therefore, it is necessary to model them simultaneously in the optimization problem.
1.4. Contributions
- Improving various operation indices such as energy loss, voltage profile, congestion of distribution lines and substations, and power factor of the system with simultaneous use of reconfiguration problem and energy management of distributed generations in the distribution system, and
- Extracting an optimal solution that has a smaller standard deviation in the final response by the CSA, and an optimal solution can be obtained in a lower calculation time.
- Improving various operation indices by using DG power management and reconfiguration program.
- Access to the lowest amount of energy losses,
- Extracting almost a flat voltage profile, and
- Extracting the optimal solution with a low standard deviation in the final response.
1.5. Paper Organization
2. Mathematical Model
3. Problem Solution Procedure
Algorithm 1: Steps of the CSA |
|
for iteration = 1:itermax |
for i = 1:N |
Select a crow randomly (e.g., crow j) |
Specify a random number between [0, 1] for jth crow, i.e., rj |
if rj ≥ AP |
position (i, iteration + 1) = position (i, iteration) + rj × fl × {memory |
(i, iteration) − position(i, iteration)} |
Check the feasibility of positions of individual crows |
else |
position (i, iteration + 1) = a random value for the position between its |
minimum and maximum values |
end |
end |
Evaluate the objective function based on the new position date |
Update the crows’ memory |
if fitness (position (i, iteration + 1)) is better than |
fitness (position (i, iteration)) |
memory (i, iteration + 1) = position (i, iteration + 1) |
else |
memory (i, iteration + 1) = memory (i, iteration) |
end |
end |
4. Numerical Results
4.1. Problem Data
4.2. Results
- A.
- Case studies
- Case 1: Power flow studies (in a network without DGs and without applying reconfiguration)
- Case 2: Power flow studies in the presence of DGs
- Case 3: Reconfiguration the distribution network with DGs
- B.
- Evaluation of reconfiguration
- C.
- Evaluation of daily curve of DGs power
- D.
- Evaluation of network indices
- E.
- Evaluation of objective function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Indices and sets | |
i | Index of bus |
l | Index of line |
t | Index of time step |
φi | Set of network buses |
φl | Set of distribution lines |
φt | Set of time steps |
Variables | |
ILre+, ILre− | Positive and negative terms of real part of current flow through the line in per-unit (p.u.) |
ILim+, ILim− | Positive and negative components of imaginary part of current flow through the line (p.u.) |
IGre | Real part of current generation by DGs (p.u.) |
IGim | Reactive part of current generation by DGs (p.u.) |
IDre | Real part of the consumption current (p.u.) |
IDim | Imaginary part of the consumption current (p.u.) |
PG | Active power generation by DGs (p.u.) |
QG | Reactive power generation by DGs (p.u.) |
PD | Consumption active power (p.u.) |
QD | Consumption reactive power (p.u.) |
Vre | Real part of the voltage (p.u.) |
Vim | Imaginary part of the voltage (p.u.) |
V | Voltage magnitude (p.u.) |
wre | An auxiliary variable in equation of real part of voltage drop (p.u.) |
wim | An auxiliary variable in equation of imaginary part of voltage drop (p.u.) |
y+, y− | Binary variables for determining the status of lines and current flow through them |
ΔIre | Real part of deviation of line current (p.u.) |
Constants | |
Cp | Coincidence factor |
Nch | Maximum number of switching |
R | Resistance of line (p.u.) |
X | Reactance of line (p.u.) |
P0, P1, P2 | Coefficients of active load curve |
Q0, Q1, Q2 | Coefficients of reactive load curve |
ILmax | Maximum capacity of line (p.u.) |
Vmax | Maximum magnitude of voltage (p.u.) |
Vmin | Minimum magnitude of the voltage (p.u.) |
Nbus | Number of buses |
PGmax | Maximum active power of DGs (p.u.) |
QGmax | Maximum reactive power of DGs (p.u.) |
PFmin | Minimum power factor |
Maximum value of wre (p.u.) | |
Minimum value of wim (p.u.) |
References
- Pirouzi, A.; Aghaei, J.; Pirouzi, S.; Vahidinasab, V.; Rezaee-Jordehi, A. Exploring potential storage-based flexibility gains of electric vehicles in smart distribution grids. J. Energy Storage 2022, 52, 105056. [Google Scholar] [CrossRef]
- Akbari, E.; Mousavi-Shabestari, S.F.; Pirouzi, S.; Jadidoleslam, M. Network flexibility regulation by renewable energy hubs using flexibility pricing-based energy management. Renew. Energy 2023, 206, 295–308. [Google Scholar] [CrossRef]
- Fathi, R.; Tousi, B.; Galvani, S. Allocation of renewable resources with radial distribution network reconfiguration using improved salp swarm algorithm. Appl. Soft Comput. 2023, 132, 109828. [Google Scholar] [CrossRef]
- Norouzi, M.A.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Fotuhi-Firuzabad, M.; Shafie-Khah, M.R. Hybrid stochastic/robust flexible and reliable scheduling of secure networked microgrids with electric springs and electric vehicles. Appl. Energy 2021, 300, 117395. [Google Scholar] [CrossRef]
- Stojanović, B.; Rajić, T.; Šošić, D. Distribution network reconfiguration and reactive power compensation using a hybrid Simulated Annealing–Minimum spanning tree algorithm. Int. J. Electr. Power Energy Syst. 2023, 147, 108829. [Google Scholar] [CrossRef]
- Sadati, S.M.B.; Rastgou, A.; Shafie-khah, M.; Bahramara, S.; Hosseini-hemati, S. Energy management modeling for a community-based electric vehicle parking lots in a power distribution grid. J. Energy Storage 2021, 38, 102531. [Google Scholar] [CrossRef]
- Nazemi, M.; Dehghanian, P.; Lu, X.; Chen, C. Uncertainty-Aware Deployment of Mobile Energy Storage Systems for Distribution Grid Resilience. IEEE Trans. Smart Grid 2021, 12, 3200–3214. [Google Scholar] [CrossRef]
- Shahbazi, A.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Vahidinasab, V.; Shafie-khah, M.; Catalão, J.P. Holistic approach to resilient electrical energy distribution network planning. Int. J. Electr. Power Energy Syst. 2021, 132, 107212. [Google Scholar] [CrossRef]
- Pirouzi, S.; Zaghian, M.; Aghaei, J.; Chabok, H.; Abbasi, M.; Norouzi, M.; Shafie-khah, M.; Catalão, J.P. Hybrid planning of distributed generation and distribution automation to improve reliability and operation indices. Int. J. Electr. Power Energy Syst. 2022, 135, 107540. [Google Scholar] [CrossRef]
- Kiani, H.; Hesami, K.; Azarhooshang, A.R.; Pirouzi, S.; Safaee, S. Adaptive robust operation of the active distribution network including renewable and flexible sources. Sustain. Energy Grids Netw. 2021, 26, 100476. [Google Scholar] [CrossRef]
- Faraji, E.; Abbasi, A.R.; Nejatian, S.; Zadehbagheri, M.; Parvin, H. Probabilistic planning of the active and reactive power sources constrained to securable-reliable operation in reconfigurable smart distribution networks. Electr. Power Syst. Res. 2021, 199, 107457. [Google Scholar] [CrossRef]
- Roustaee, M.; Kazemi, A. Multi-objective energy management strategy of unbalanced multi-microgrids considering technical and economic situations. Sustain. Energy Technol. Assess. 2021, 47, 101448. [Google Scholar] [CrossRef]
- Roustaee, M.; Kazemi, A. Multi-objective stochastic operation of multi-microgrids constrained to system reliability and clean energy based on energy management system. Electr. Power Syst. Res. 2021, 194, 106970. [Google Scholar] [CrossRef]
- Homayoun, R.; Bahmani-Firouzi, B.; Niknam, T. Multi-objective operation of distributed generations and thermal blocks in microgrids based on energy management system. IET Gener. Transm. Distrib. 2021, 15, 1451–1462. [Google Scholar] [CrossRef]
- Rohani, A.; Abasi, M.; Beigzadeh, A.; Joorabian, M.; Gharehpetian, G.B. Bi-level power management strategy in harmonic-polluted active distribution network including virtual power plants. IET Renew. Power Gener. 2021, 15, 462–476. [Google Scholar] [CrossRef]
- Hamidan, M.A.; Borousan, F. Optimal planning of distributed generation and battery energy storage systems simultaneously in distribution networks for loss reduction and reliability improvement. J. Energy Storage 2022, 46, 103844. [Google Scholar] [CrossRef]
- Wu, Z.Z.; Xu, Y.P.; Cheng, Z.L.; Sun, H.W.; Papari, B.; Sajadi, S.S.; Qasim, F. Optimal placement and sizing of the virtual power plant constrained to flexible-renewable energy proving in the smart distribution network. Sustain. Energy Technol. Assess. 2022, 49, 101688. [Google Scholar] [CrossRef]
- Cikan, M.; Kekezoglu, B. Comparison of metaheuristic optimization techniques including Equilibrium optimizer algorithm in power distribution network reconfiguration. Alex. Eng. J. 2022, 61, 991–1031. [Google Scholar] [CrossRef]
- Franco, J.F.; Rider, M.J.; Lavorato, M.; Romero, R. A mixed-integer LP model for the reconfiguration of radial electric distribution systems considering distributed generation. Electr. Power Syst. Res. 2013, 97, 51–60. [Google Scholar] [CrossRef]
- Ge, L.; Du, T.; Li, C.; Li, Y.; Yan, J.; Rafiq, M.U. Virtual Collection for Distributed Photovoltaic Data: Challenges, Methodologies, and Applications. Energies 2022, 15, 8783. [Google Scholar] [CrossRef]
- Chen, J.; Sun, B.; Li, Y.; Jing, R.; Zeng, Y.; Li, M. Credible capacity calculation method of distributed generation based on equal power supply reliability criterion. Renew. Energy 2022, 201, 534–547. [Google Scholar] [CrossRef]
- Sun, S.; Liu, Y.; Li, Q.; Wang, T.; Chu, F. Short-term multi-step wind power forecasting based on spatio-temporal correlations and transformer neural networks. Energy Convers. Manag. 2023, 283, 116916. [Google Scholar] [CrossRef]
- Li, M.; Yang, M.; Yu, Y.; Lee, W. A wind speed correction method based on modified hidden Markov model for enhancing wind power forecast. IEEE Trans. Ind. Appl. 2021, 58, 656–666. [Google Scholar] [CrossRef]
- Zhang, Z.; Altalbawy, F.M.A.; Al-Bahrani, M.; Riadi, Y. Regret-based multi-objective optimization of carbon capture facility in CHP-based microgrid with carbon dioxide cycling. J. Clean. Prod. 2023, 384, 135632. [Google Scholar] [CrossRef]
- Huang, N.; Chen, Q.; Cai, G.; Xu, D.; Zhang, L.; Zhao, W. Fault Diagnosis of Bearing in Wind Turbine Gearbox Under Actual Operating Conditions Driven by Limited Data With Noise Labels. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Hamidpour, H.R.; Aghaei, J.; Pirouzi, S.; Niknam, T.; Nikoobakht, A.; Lehtonen, M.; Shafie-khah, M.; Catalão, J.P. Coordinated expansion planning problem considering wind farms, energy storage systems and demand response. Energy 2022, 239, 122321. [Google Scholar] [CrossRef]
- Hamidpour, H.R.; Pirouzi, S.; Safaee, S.; Norouzi, M.A.; Lehtonen, M. Multi-objective resilient-constrained generation and transmission expansion planning against natural disasters. Int. J. Electr. Power Energy Syst. 2021, 132, 107193. [Google Scholar] [CrossRef]
- Pirouzi, S.; Aghaei, J.; Latify, M.A.; Yousefi, G.R.; Mokryani, G. A robust optimization approach for active and reactive power management in smart distribution networks using electric vehicles. IEEE Syst. J. 2017, 12, 2699–2710. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Shi, J.; Ma, C.; Zuo, S.; Zhang, J.; Chen, C.; Huang, N. Non-intrusive residential electricity load decomposition via low-resource model transferring. J. Build. Eng. 2023, 73, 106799. [Google Scholar] [CrossRef]
- Huang, N.; Zhao, X.; Guo, Y.; Cai, G.; Wang, R. Distribution network expansion planning considering a distributed hydrogen-thermal storage system based on photovoltaic development of the Whole County of China. Energy 2023, 278, 127761. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, Y.; Hu, J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023, 34, 101004. [Google Scholar] [CrossRef]
- Taghieh, A.; Mohammadzadeh, A.; Zhang, C.; Kausar, N.; Castillo, O. A type-3 fuzzy control for current sharing and voltage balancing in microgrids. Appl. Soft Comput. 2022, 129, 109636. [Google Scholar] [CrossRef]
- Li, P.; Hu, J.; Qiu, L.; Zhao, Y.; Ghosh, B.K. A Distributed Economic Dispatch Strategy for Power–Water Networks. IEEE Trans. Control Netw. Syst. 2022, 9, 356–366. [Google Scholar] [CrossRef]
- Cai, T.; Dong, M.; Chen, K.; Gong, T. Methods of participating power spot market bidding and settlement for renewable energy systems. Energy Rep. 2022, 8, 7764–7772. [Google Scholar] [CrossRef]
- Zhao, P.; Ma, K.; Yang, J.; Yang, B.; Guerrero, J.M.; Dou, C.; Guan, X. Distributed Power Sharing Control Based on Adaptive Virtual Impedance in Seaport Microgrids with Cold Ironing. IEEE Trans. Transp. Electrif. 2022, 9, 2472–2485. [Google Scholar] [CrossRef]
- Song, J.; Mingotti, A.; Zhang, J.; Peretto, L.; Wen, H. Fast iterative-interpolated DFT phasor estimator considering out-of-band interference. IEEE Trans. Instrum. Meas. 2022, 71, 1–14. [Google Scholar] [CrossRef]
- Xu, S.; Huang, W.; Huang, D.; Chen, H.; Chai, Y.; Ma, M.; Zheng, W.X. A Reduced-Order Observer-Based Method for Simultaneous Diagnosis of Open-Switch and Current Sensor Faults of a Grid-Tied NPC Inverter. IEEE Trans. Power Electron. 2023, 38, 9019–9032. [Google Scholar] [CrossRef]
- Cao, B.; Yan, Y.; Wang, Y.; Liu, X.; Lin, J.C.W.; Sangaiah, A.K.; Lv, Z. A Multiobjective Intelligent Decision-Making Method for Multistage Placement of PMU in Power Grid Enterprises. IEEE Trans. Ind. Inform. 2022, 19, 7636–7644. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Hu, Z.; Chen, S.; Zheng, X. Risk Propagation in Multilayer Heterogeneous Network of Coupled System of Large Engineering Project. J. Manag. Eng. 2022, 38, 4022003. [Google Scholar] [CrossRef]
- Dang, W.; Liao, S.; Yang, B.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. An encoder-decoder fusion battery life prediction method based on Gaussian process regression and improvement. J. Energy Storage 2023, 59, 106469. [Google Scholar] [CrossRef]
- Yu, F.; Liu, L.; Xiao, L.; Li, K.; Cai, S. A robust and fixed-time zeroing neural dynamics for computing time-variant nonlinear equation using a novel nonlinear activation function. Neurocomputing 2019, 350, 108–116. [Google Scholar] [CrossRef]
- Xiong, B.; Yang, K.; Zhao, J.; Li, K. Robust dynamic network traffic partitioning against malicious attacks. J. Netw. Comput. Appl. 2017, 87, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Ding, Y.; Yang, Y.; Sherratt, R.S.; Park, J.H.; Wang, J. Parameterized algorithms of fundamental NP-hard problems: A survey. Hum.-Cent. Comput. Inf. Sci. 2020, 10, 29. [Google Scholar] [CrossRef]
- Tang, Q.; Chang, L.; Yang, K.; Wang, K.; Wang, J.; Sharma, P.K. Task number maximization offloading strategy seamlessly adapted to UAV scenario. Comput. Commun. 2020, 151, 19–30. [Google Scholar] [CrossRef]
- Li, K.; Yang, W.; Li, K. Performance Analysis and Optimization for SpMV on GPU Using Probabilistic Modeling. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 196–205. [Google Scholar] [CrossRef]
- Liu, C.; Li, K.; Li, K.; Buyya, R. A New Service Mechanism for Profit Optimizations of a Cloud Provider and Its Users. IEEE Trans. Cloud Comput. 2021, 9, 14–26. [Google Scholar] [CrossRef]
- Chen, J.; Li, K.; Li, K.; Yu, P.S.; Zeng, Z. Dynamic Planning of Bicycle Stations in Dockless Public Bicycle-sharing System Using Gated Graph Neural Network. ACM Trans. Intell. Syst. Technol. 2021, 12, 25. [Google Scholar] [CrossRef]
- Yu, D.; Duan, C.; Gu, B. Design and evaluation of a novel plan for thermochemical cycles and PEM fuel cells to produce hydrogen and power: Application of environmental perspective. Chemosphere 2023, 10, 138935. [Google Scholar] [CrossRef]
- Yang, S.T.; Li, X.Y.; Yu, T.L.; Wang, J.; Fang, H.; Nie, F.; Zheng, L.M. High-Performance Neuromorphic Computing Based on Ferroelectric Synapses with Excellent Conductance Linearity and Symmetry. Adv. Funct. Mater. 2022, 32, 2202366. [Google Scholar] [CrossRef]
- Miao, Z.; Meng, X.; Zhou, S.; Zhu, M. Thermo-mechanical analysis on thermoelectric legs arrangement of thermoelectric modules. Renew. Energy 2020, 147, 2272–2278. [Google Scholar] [CrossRef]
- Li, K.; Tang, X.; Li, K. Energy-Efficient Stochastic Task Scheduling on Heterogeneous Computing Systems. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 2867–2876. [Google Scholar] [CrossRef]
- Li, K.; Tang, X.; Veeravalli, B.; Li, K. Scheduling Precedence Constrained Stochastic Tasks on Heterogeneous Cluster Systems. IEEE Trans. Comput. 2015, 64, 191–204. [Google Scholar] [CrossRef]
- Wang, S.; Long, Y.; Ruby, R.; Fu, X. Clustering and power optimization in mmWave massive MIMO-NOMA systems. Phys. Commun. 2021, 49, 101469. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, Z.; Wang, L.; Zhang, J. Probabilistic life prediction for reinforced concrete structures subjected to seasonal corrosion-fatigue damage. J. Struct. Eng. 2020, 146, 04020117. [Google Scholar] [CrossRef]
- Min, L.; Xiong, X. Outage performance of double-relay cooperative transmission network with energy harvesting. Phys. Commun. 2018, 29, 261–267. [Google Scholar]
- Tang, Q.; Wang, K.; Yang, K.; Luo, Y.-S. Congestion-Balanced and Welfare-Maximized Charging Strategies for Electric Vehicles. IEEE Trans. Parallel Distrib. Syst. 2020, 31, 2882–2895. [Google Scholar] [CrossRef]
- Lv, Z.; Wu, J.; Li, Y.; Song, H. Cross-Layer Optimization for Industrial Internet of Things in Real Scene Digital Twins. IEEE Internet Things J. 2022, 9, 15618–15629. [Google Scholar] [CrossRef]
- Lv, Z.; Cheng, C.; Song, H. Digital Twins Based on Quantum Networking. IEEE Netw. 2022, 36, 88–93. [Google Scholar] [CrossRef]
- Lv, Z.; Qiao, L.; Nowak, R. Energy-Efficient Resource Allocation of Wireless Energy Transfer for the Internet of Everything in Digital Twins. IEEE Commun. Mag. 2022, 60, 68–73. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Zhou, C.; Sherratt, S.; Wang, L. Optimal Coverage Multi-Path Scheduling Scheme with Multiple Mobile Sinks for WSNs. CMC-Comput. Mater. Contin. 2020, 62, 695–711. [Google Scholar] [CrossRef]
- Luo, Y.-S.; Yang, K.; Tang, Q.; Zhang, J.; Xiong, B. A multi-criteria network-aware service composition algorithm in wireless environments. Comput. Commun. 2012, 35, 1882–1892. [Google Scholar] [CrossRef]
- Yu, F.; Tang, Q.; Wang, W.; Wu, H. A 2.7 GHz Low-Phase-Noise LC-QVCO Using the Gate-Modulated Coupling Technique. Wirel. Pers. Commun. 2016, 86, 671–681. [Google Scholar] [CrossRef]
- Yu, F. A Low-Voltage and Low-Power 3-GHz CMOS LC VCO for S-Band Wireless Applications. Wirel. Pers. Commun. 2014, 78, 905–914. [Google Scholar] [CrossRef]
- Tang, Q.; Xie, M.; Yang, K.; Luo, Y.; Zhou, D.; Song, Y. A Decision Function Based Smart Charging and Discharging Strategy for Electric Vehicle in Smart Grid. Mob. Netw. Appl. 2019, 24, 1722–1731. [Google Scholar] [CrossRef]
- Liao, Z.; Peng, J.; Huang, J.; Wang, J.; Wang, J.; Sharma, P.K.; Ghosh, U. Distributed Probabilistic Offloading in Edge Computing for 6G-Enabled Massive Internet of Things. IEEE Internet Things J. 2021, 8, 5298–5308. [Google Scholar] [CrossRef]
- Gao, J.; Sun, H.; Han, J.; Sun, Q.; Zhong, T. Research on Recognition Method of Electrical Components Based on FEYOLOv4-tiny. J. Electr. Eng. Technol. 2022, 17, 3541–3551. [Google Scholar] [CrossRef]
- Gu, Q.; Tian, J.; Yang, B.; Liu, M.; Gu, B.; Yin, Z.; Lirong, Y.; Zheng, W. A Novel Architecture of a Six Degrees of Freedom Parallel Platform. Electronics 2023, 12, 1774. [Google Scholar] [CrossRef]
- Yan, Z.; Wen, H. Electricity theft detection base on extreme gradient boosting in AMI. IEEE Trans. Instrum. Meas. 2021, 70, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Zhong, S.; Wang, J.; Yu, X.; Alfarraj, O. A Storage Optimization Scheme for Blockchain Transaction Databases. Comput. Syst. Sci. Eng. 2021, 36, 521–535. [Google Scholar] [CrossRef]
- Xu, Z.; Liang, W.; Li, K.-C.; Xu, J.; Jin, H. A blockchain-based Roadside Unit-assisted authentication and key agreement protocol for Internet of Vehicles. J. Parallel Distrib. Comput. 2021, 149, 29–39. [Google Scholar] [CrossRef]
- Wang, J.; Chen, W.; Wang, L.; Sherratt, R.S.; Alfarraj, O.; Tolba, A. Data Secure Storage Mechanism of Sensor Networks Based on Blockchain. CMS-Comput. Mater. Contin. 2020, 65, 2365–2384. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, K.; Xiang, L.; Luo, Y.; Xiong, B.; Tang, Q. A Self-Adaptive Regression-Based Multivariate Data Compression Scheme with Error Bound in Wireless Sensor Networks. Int. J. Distrib. Sens. Netw. 2013, 9, 913497. [Google Scholar] [CrossRef]
- Tang, Q.; Yang, K.; Li, P.; Zhang, J.; Luo, Y.; Xiong, B. An energy efficient MCDS construction algorithm for wireless sensor networks. EURASIP J. Wirel. Commun. Netw. 2012, 2012, 83. [Google Scholar] [CrossRef]
- Miao, Z.; Meng, X.; Liu, L. Design a new thermoelectric module with high practicability based on experimental measurement. Energy Convers. Manag. 2021, 241, 114320. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Z.; Luo, R.; Zhao, R.; Xiao, Y.; Xu, Y. A low-carbon, fixed-tour scheduling problem with time windows in a time-dependent traffic environment. Int. J. Prod. Res. 2022. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Yuan, X.; Shen, Y.; Lu, Z.; Wang, Z. Adaptive Dynamic Surface Control with Disturbance Observers for Battery/Supercapacitor-based Hybrid Energy Sources in Electric Vehicles. IEEE Trans. Transp. Electrif. 2022. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Najy, W.K.A.; Zeineldin, H.H.; Woon, W.L. Optimal Protection Coordination for Microgrids With Grid-Connected and Islanded Capability. IEEE Trans. Ind. Electron. 2013, 60, 1668–1677. [Google Scholar] [CrossRef]
- Li, S. Power flow modeling considering detailed constraints of the DFIGs and collector networks based on 3-layer BFS and convergence improvement. Int. J. Electr. Power Energy Syst. 2023, 147, 108913. [Google Scholar] [CrossRef]
- Harsh, P.; Das, D. A Simple and Fast Heuristic Approach for the Reconfiguration of Radial Distribution Networks. IEEE Trans. Power Syst. 2023, 38, 2939–2942. [Google Scholar] [CrossRef]
- Dini, A.; Hassankashi, A.; Pirouzi, S.; Lehtonen, M.; Arandian, B.; Baziar, A.A. A flexible-reliable operation optimization model of the networked energy hubs with distributed generations, energy storage systems and demand response. Energy 2022, 239, 121923. [Google Scholar] [CrossRef]
- Jokar, M.R.; Shahmoradi, S.; Mohammed, A.H.; Foong, L.K.; Le, B.N.; Pirouzi, S. Stationary and mobile storages-based renewable off-grid system planning considering storage degradation cost based on information-gap decision theory optimization. J. Energy Storage 2023, 58, 106389. [Google Scholar] [CrossRef]
- Yan, Z.; Gao, Z.; Borjali-Navesi, R.; Jadidoleslam, M.; Pirouzi, A. Smart distribution network operation based on energy management system considering economic-technical goals of network operator. Energy Rep. 2023, 9, 4466–4477. [Google Scholar] [CrossRef]
- Moayed, S.H.; Shahi, H.H.; Akbarizadeh, M.; Jadidoleslam, M.; Aghatehrani, A.; Pirouzi, A. Presenting a Stochastic Model of Simultaneous Planning Problem of Distribution and Subtransmission Network Development considering the Reliability and Security Indicators. Int. Trans. Electr. Energy Syst. 2023, 2023, 8198865. [Google Scholar] [CrossRef]
- Piltan, G.; Pirouzi, S.; Azarhooshang, A.; Jordehi, A.R.; Paeizi, A.; Ghadamyari, M. Storage-integrated virtual power plants for resiliency enhancement of smart distribution systems. J. Energy Storage 2022, 55, 105563. [Google Scholar] [CrossRef]
- Kavousi-Fard, A.; Khodaei, A. Efficient integration of plug-in electric vehicles via reconfigurable microgrids. Energy 2016, 111, 653–663. [Google Scholar] [CrossRef]
- IEEE Std 1547.9-2022; IEEE Guide for Using IEEE Std 1547 for Interconnection of Energy Storage Distributed Energy Resources with Electric Power Systems. IEEE: Piscataway, NJ, USA, 2022.
- Rani, R.R.; Ramyachitra, D. Krill Herd Optimization algorithm for cancer feature selection and random forest technique for classification. In Proceedings of the IEEE International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 24–26 November 2017; pp. 109–113. [Google Scholar]
- Mirjalili, S.A.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Gill, H.S.; Khehra, B.S.; Singh, A.; Kaur, L. Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values. Egypt. Inform. J. 2019, 20, 11–25. [Google Scholar] [CrossRef]
Ref. | Model of System Reconfiguration | Model of DG Operation | Energy Loss Minimization | Voltage Limit Model | Model of Power Factor | Model of Lines and Post Capacity |
---|---|---|---|---|---|---|
[6] | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[7] | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[8] | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ |
[9] | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ |
[10] | ✗ | ✓ | ✗ | ✓ | ✓ | ✓ |
[11] | ✓ | ✓ | ✗ | ✓ | ✗ | ✓ |
[12] | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
[13] | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
[14] | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
[15] | ✗ | ✗ | ✗ | ✓ | ✓ | ✓ |
[16] | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
[17] | ✗ | ✗ | ✗ | ✓ | ✗ | ✓ |
[18] | ✓ | ✗ | ✗ | ✓ | ✗ | ✓ |
[19] | ✓ | Considering un-controllable model | ✓ | ✓ | ✗ | ✓ |
CP | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Hour | Open Switches | Hour | Open Switches | Hour | Open Switches |
---|---|---|---|---|---|
1 | 15, 44, 56, 63, 72 | 9 | 3, 11, 14, 21, 41 | 17 | 46, 47, 56, 63, 72 |
2 | 15, 44, 56, 6, 72 | 10 | 11, 13, 22, 23, 72 | 18 | 14, 15, 46, 47, 56 |
3 | 15, 11, 41, 63, 55 | 11 | 9, 13, 24, 43, 48 | 19 | 12, 14, 15, 57, 72 |
4 | 13, 43, 48, 63, 72 | 12 | 5, 11, 40, 47, 56 | 20 | 14, 15, 56, 70, 72 |
5 | 6, 14, 22, 47, 56 | 13 | 3, 13, 41, 43, 44 | 21 | 12, 47, 56, 57, 72 |
6 | 11, 40, 46, 54, 63 | 14 | 9, 13, 19, 56, 70 | 22 | 12, 13, 20, 47, 56 |
7 | 40, 47, 56, 63, 57 | 15 | 3, 9, 17, 36, 57 | 23 | 14, 47, 71, 72, 73 |
8 | 3, 16, 41, 63, 56 | 16 | 35, 44, 56, 63, 57 | 24 | 13, 55, 57, 71, 72 |
Case | Annual Energy Loss (MWh) |
---|---|
1 | 802.27 |
2 | 748.97 |
3 | 97.455 |
Solver | Annual Energy Loss (MWh) | Convergence Iteration | Convergence Time (s) | Standard Deviation (%) |
---|---|---|---|---|
CSA | 97.455 | 2936 | 128 | 0.96 |
KHO | 99.874 | 3567 | 174 | 1.48 |
GWO | 104.032 | 3974 | 198 | 1.97 |
TLBO | 109.257 | 4367 | 241 | 2.34 |
PSO | 113.228 | 4822 | 287 | 2.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Zhang, Y. Energy Management Capability in the Reconfigurable Distribution Networks with Distributed Generation for Minimization of Energy Loss. Appl. Sci. 2023, 13, 8265. https://doi.org/10.3390/app13148265
Jiang M, Zhang Y. Energy Management Capability in the Reconfigurable Distribution Networks with Distributed Generation for Minimization of Energy Loss. Applied Sciences. 2023; 13(14):8265. https://doi.org/10.3390/app13148265
Chicago/Turabian StyleJiang, Minmin, and Yunfeng Zhang. 2023. "Energy Management Capability in the Reconfigurable Distribution Networks with Distributed Generation for Minimization of Energy Loss" Applied Sciences 13, no. 14: 8265. https://doi.org/10.3390/app13148265
APA StyleJiang, M., & Zhang, Y. (2023). Energy Management Capability in the Reconfigurable Distribution Networks with Distributed Generation for Minimization of Energy Loss. Applied Sciences, 13(14), 8265. https://doi.org/10.3390/app13148265