Effect of Drying Temperature of Ambar Pumpkin on Proximate Composition and Content of Bioactive Ingredients
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Analyses
2.2.1. Proximate Analysis
2.2.2. Gas Chromatography
2.2.3. High-Performance Liquid Chromatography (HPLC)
2.2.4. Antioxidant Activity
2.2.5. Statistics
3. Results
Antioxidative Potential
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martha Perez Gutierrez, R. Review of Cucurbita pepo (Pumpkin) Its Phytochemistry and Pharmacology. Med. Chem. 2016, 6, 12–21. [Google Scholar] [CrossRef]
- Rakcejeva, T.; Galoburda, R.; Cude, L.; Strautniece, E. Use of Dried Pumpkins in Wheat Bread Production. Procedia Food Sci. 2011, 1, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Edge, R.; Truscott, T.G. Singlet Oxygen and Free Radical Reactions of Retinoids and Carotenoids—A Review. Antioxidants 2018, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nabi, F.; Arain, M.A.; Rajput, N.; Alagawany, M.; Soomro, J.; Umer, M.; Soomro, F.; Wang, Z.; Ye, R.; Liu, J. Health Benefits of Carotenoids and Potential Application in Poultry Industry: A Review. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1809–1818. [Google Scholar] [CrossRef] [Green Version]
- Kaur, S.; Panghal, A.; Garg, M.K.; Mann, S.; Khatkar, S.K.; Sharma, P.; Chhikara, N. Functional and Nutraceutical Properties of Pumpkin–A Review. Nutr. Food Sci. 2020, 50, 384–401. [Google Scholar] [CrossRef]
- Nawirska, A.; Figiel, A.; Kucharska, A.Z.; Sokół-Łetowska, A.; Biesiada, A. Drying Kinetics and Quality Parameters of Pumpkin Slices Dehydrated Using Different Methods. J. Food Eng. 2009, 94, 14–20. [Google Scholar] [CrossRef]
- Bieżanowska-Kopeć, R.; Ambroszczyk, A.M.; Piatkowska, E.; Leszczyńska, T. Nutritional Value and Antioxidant Activity of Fresh Pumpkin Flowers (Cucurbita Sp.) Grown in Poland. Appl. Sci. 2022, 12, 6673. [Google Scholar] [CrossRef]
- Nawirska, A.; Sokol-Letowska, A.; Kucharska, A.Z.; Biesiada, A.; Bednarek, M. Porownanie Zawartosci Frakcji Wlokna Pokarmowego w Odmianach Dyni z Gatunku Cucurbita maxima i Cucurbita pepo. Żywność Nauka Technol. Jakość 2008, 15, 65–73. [Google Scholar]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Rouphael, Y.; Petrović, J.; Soković, M.; Ferreira, I.C.F.R.; Barros, L. Antimicrobial Properties, Cytotoxic Effects, and Fatty Acids Composition of Vegetable Oils from Purslane, Linseed, Luffa, and Pumpkin Seeds. Appl. Sci. 2021, 11, 5738. [Google Scholar] [CrossRef]
- Šamec, D.; Loizzo, M.R.; Gortzi, O.; Çankaya, İ.T.; Tundis, R.; Suntar, İ.; Shirooie, S.; Zengin, G.; Devkota, H.P.; Reboredo-Rodríguez, P.; et al. The Potential of Pumpkin Seed Oil as a Functional Food—A Comprehensive Review of Chemical Composition, Health Benefits, and Safety. Compr. Rev. Food Sci. Food Saf. 2022, 21, 4422–4446. [Google Scholar] [CrossRef]
- Golanski, J.; Szymanska, P.; Rozalski, M. Effects of Omega-3 Polyunsaturated Fatty Acids and Their Metabolites on Haemostasis—Current Perspectives in Cardiovascular Disease. Int. J. Mol. Sci. 2021, 22, 2394. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, M.N.; Nomikos, T.; Fragopoulou, E.; Antonopoulou, S. Antioxidant and Lipoxygenase Inhibitory Activities of Pumpkin Seed Extracts. Food Res. Int. 2009, 42, 641–646. [Google Scholar] [CrossRef]
- Sharma, P.; Kaur, G.; Kehinde, B.A.; Chhikara, N.; Panghal, A.; Kaur, H. Pharmacological and Biomedical Uses of Extracts of Pumpkin and Its Relatives and Applications in the Food Industry: A Review. Int. J. Veg. Sci. 2019, 26, 79–95. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Pinho, S.; Barroca, M.J. Study of the Convective Drying of Pumpkin (Cucurbita maxima). Food Bioprod. Process. 2011, 89, 422–428. [Google Scholar] [CrossRef]
- Roongruangsri, W.; Bronlund, J.E. A Review of Drying Processes in the Production of Pumpkin Powder. Int. J. Food Eng. 2015, 11, 789–799. [Google Scholar] [CrossRef]
- Karam, M.C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. [Google Scholar] [CrossRef]
- Chao, E.; Tian, J.; Fan, L.; Zhang, T. Drying Methods Influence the Physicochemical and Functional Properties of Seed-Used Pumpkin. Food Chem. 2022, 369, 130937. [Google Scholar] [CrossRef]
- Bochnak, J.; Świeca, M. Potentially Bioaccessible Phenolics, Antioxidant Capacities and the Colour of Carrot, Pumpkin and Apple Powders–Effect of Drying Temperature and Sample Structure. Int. J. Food Sci. Technol. 2020, 55, 136–145. [Google Scholar] [CrossRef]
- Kuljarachanan, T.; Devahastin, S.; Chiewchan, N. Evolution of Antioxidant Compounds in Lime Residues during Drying. Food Chem. 2009, 113, 944–949. [Google Scholar] [CrossRef]
- Phanindra Kumar, H.S.; Radhakrishna, K.; Nagaraju, P.K.; Vijaya Rao, D. Effect of Combination Drying on the Physico-Chemical Characteristics of Carrot and Pumpkin. J. Food Process. Preserv. 2001, 25, 447–460. [Google Scholar] [CrossRef]
- Nindo, C.I.; Sun, T.; Wang, S.W.; Tang, J.; Powers, J.R. Evaluation of Drying Technologies for Retention of Physical Quality and Antioxidants in Asparagus (Asparagus officinalis, L.). LWT-Food Sci. Technol. 2003, 36, 507–516. [Google Scholar] [CrossRef]
- Biesiada, A.; Nawirska, A.; Kucharska, A.; Sokół-Łętowska, A. Chemical Composition of Pumpkin Fruit Depending on Cultivar and Storage. Ecol. Chem. Eng. A 2011, 18, 9–18. [Google Scholar]
- CEU Repositorio Institucional: Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs/Edited by William Horwitz. Available online: https://repositorioinstitucional.ceu.es/handle/10637/3158 (accessed on 23 February 2021).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Eggers, L.F.; Schwudke, D. Liquid Extraction: Folch. In Encyclopedia of Lipidomics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Fratianni, A.; Niro, S.; Messia, M.C.; Cinquanta, L.; Panfili, G.; Albanese, D.; Di Matteo, M. Kinetics of Carotenoids Degradation and Furosine Formation in Dried Apricots (Prunus armeniaca L.). Food Res. Int. 2017, 99, 862–867. [Google Scholar] [CrossRef] [PubMed]
- Provesi, J.G.; Dias, C.O.; Amante, E.R. Changes in Carotenoids during Processing and Storage of Pumpkin Puree. Food Chem. 2011, 128, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, E.M.G.; Chitchumroonchokchai, C.; de Carvalho, L.M.J.; de Moura, F.F.; de Carvalho, J.L.V.; Failla, M.L. Effect of Style of Home Cooking on Retention and Bioaccessibility of Pro-Vitamin A Carotenoids in Biofortified Pumpkin (Cucurbita moschata Duch.). Food Res. Int. 2015, 77, 620–626. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S.; do Nascimento, P.; Fontes, E.A.F.; Mauro, M.A.; Kimura, M. Edible Coatings from Native and Modified Starches Retain Carotenoids in Pumpkin during Drying. LWT-Food Sci. Technol. 2013, 50, 420–425. [Google Scholar] [CrossRef]
- Dutta, D.; Dutta, A.; Raychaudhuri, U.; Chakraborty, R. Rheological Characteristics and Thermal Degradation Kinetics of Beta-Carotene in Pumpkin Puree. J. Food Eng. 2006, 76, 538–546. [Google Scholar] [CrossRef]
- Ouyang, M.; Huang, Y.; Wang, Y.; Luo, F.; Liao, L. Stability of Carotenoids and Carotenoid Esters in Pumpkin (Cucurbita maxima) Slices during Hot Air Drying. Food Chem. 2022, 367, 130710. [Google Scholar] [CrossRef]
- Sablani, S.S. Food Quality Attributes in Drying. Stewart Postharvest Rev. 2006, 2, 1–6. [Google Scholar] [CrossRef]
- Köprüalan, Ö.; Altay, Ö.; Bodruk, A.; Kaymak-Ertekin, F. Effect of Hybrid Drying Method on Physical, Textural and Antioxidant Properties of Pumpkin Chips. J. Food Meas. Charact. 2021, 15, 2995–3004. [Google Scholar] [CrossRef]
- Albanese, D.; Adiletta, G.; D’Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato Peel Drying and Carotenoids Stability of the Extracts. Int. J. Food Sci. Technol. 2014, 49, 2458–2463. [Google Scholar] [CrossRef]
- Que, F.; Mao, L.; Fang, X.; Wu, T. Comparison of Hot Air-Drying and Freeze-Drying on the Physicochemical Properties and Antioxidant Activities of Pumpkin (Cucurbita moschata Duch.) Flours. Int. J. Food Sci. Technol. 2008, 43, 1195–1201. [Google Scholar] [CrossRef]
- Soong, Y.Y.; Barlow, P.J. Antioxidant Activity and Phenolic Content of Selected Fruit Seeds. Food Chem. 2004, 88, 411–417. [Google Scholar] [CrossRef]
- Nawirska-Olszańska, A.; Kita, A.; Biesiada, A.; Sokół-ŁȨtowska, A.; Kucharska, A.Z. Characteristics of Antioxidant Activity and Composition of Pumpkin Seed Oils in 12 Cultivars. Food Chem. 2013, 139, 155–161. [Google Scholar] [CrossRef]
- Cichosz, G.; Czechot, H. Oxidative Stability of Edible Fats–Health Consequences. Bromat. Chem. Toksykol. 2011, XLIV, 50–60. [Google Scholar]
- Han, Y.; ZHeng, Y.; Li, S.; Mo, R.; Long, X.; Liu, Y. Effects of Drying Process with Different Temperature on the Nutritional Qualities of Walnut (Juglans regia L.). Food Sci. Technol. Res. 2019, 25, 167–177. [Google Scholar] [CrossRef]
- Çetin, N.; Ciftci, B.; Kara, K.; Kaplan, M. Effects of Gradually Increasing Drying Temperatures on Energy Aspects, Fatty Acids, Chemical Composition, and in Vitro Ruminal Fermentation of Acorn. Environ. Sci. Pollut. Res. 2023, 30, 19749–19765. [Google Scholar] [CrossRef]
Parameter | 40 °C | 60 °C | 80 °C | p-Value | SE |
---|---|---|---|---|---|
Dry matter (%) | 90.36 A | 92.27 B | 91.16 A | 0.0003 | 0.2718 |
Ash (g/kg DM) | 8.37 A | 10.53 B | 7.90 A | 0.0000 | 0.1232 |
NDF (g/kg DM) | 24.50 A | 27.12 B | 23.83 A | 0.0028 | 0.6191 |
ADF (g/kg DM) | 26.75 A | 27.29 A | 21.60 B | 0.0000 | 0.5511 |
ADL (g/kg DM) | 5.68 A | 7.80 B | 5.48 A | 0.0000 | 0.2806 |
Protein (g/kg DM) | 19.15 A | 21.88 B | 16.50 C | 0.0000 | 0.2767 |
Fat (g/kg DM) | 13.01 A | 13.02 A | 11.10 B | 0.0000 | 0.2603 |
Fiber (g/kg DM) | 18.04 A | 19.86 B | 14.49 C | 0.0000 | 0.346 |
Individual Carotenoids | 40 °C | 60 °C | 80 °C | p-Value | SE |
---|---|---|---|---|---|
β-carotene | 33.92 A | 31.27 A | 27.20 B | 0.0005 | 1.012 |
α-carotene | 38.56 | 38.54 | 33.62 | 0.0901 | 0.0577 |
violaxanthin | 3.72 A | 3.16 A | 1.29 B | 0.0001 | 0.2591 |
zeaxanthin | 0.27 A | 0.25 A | 0.18 B | 0.0394 | 0.0231 |
lutein | 8.74 A | 8.14 A | 6.58 B | 0.0470 | 0.5279 |
Antioxidant Power | 40 °C | 60 °C | 80 °C | p-Value | SE |
---|---|---|---|---|---|
DPPH mmol TROLOX/l | 0.51 A | 0.50 B | 0.49 C | 0.0026 | 0.001 |
Fatty Acids (Groups and Individuals) | 40 °C | 60 °C | 80 °C | p-Value | SE |
---|---|---|---|---|---|
Saturated fatty acids (SFAs) | 22.26 | 20.14 | 21.04 | 0.1111 | 0.6797 |
Monounsaturated fatty acids (MUFAs) | 18.97 A | 19.16 A | 18.31 B | 0.0010 | 0.1414 |
Polyunsaturated fatty acids (PUFAs) | 58.59 | 60.49 | 60.45 | 0.0877 | 0.6566 |
C10:0 | 0.0062 | 0.0059 | 0.0066 | 0.6471 | 0.00047 |
C12:0 | 0.044 | 0.04 | 0.046 | 0.1284 | 0.0019 |
C14:0 | 0.394 | 0.367 | 0.405 | 0.0575 | 0.0106 |
C14:1 | 0.0285 A | 0.0087 B | 0.0117 B | 0.0069 | 0.0042 |
C15:0 | 0.0511 | 0.0425 | 0.0448 | 0.1141 | 0.0028 |
C16:0 | 15.97 | 14.36 | 15.2 | 0.0694 | 0.4597 |
C16:1n-9 | 0.028 A | 0.046 B | 0.043 B | 0.0049 | 0.0035 |
C16:1n-7 | 0.2373 A | 0.1751 B | 0.1983 C | 0.0000 | 0.0041 |
C17:0 | 0.0856 | 0.0796 | 0.0826 | 0.4659 | 0.0033 |
C17:1 | 0.0204 | 0.026 | 0.0253 | 0.3676 | 0.003 |
C18:0 | 5.047 | 4.692 | 4.698 | 0.3318 | 0.1883 |
C18:1n-9 | 16.279 A | 16.954 B | 16.206 C | 0.0012 | 0.1338 |
C18:1n-7 | 2.273 A | 1.867 B | 1.728 C | 0.0000 | 0.0428 |
C18:2n-6 | 54.45 | 56.19 | 55.01 | 0.1260 | 0.5873 |
C18:3n-3 | 3.91 B | 4.22 B | 5.2 A | 0.0000 | 0.1517 |
C20:0 | 0.319 | 0.314 | 0.32 | 0.9599 | 0.0164 |
C20:1 | 0.107 | 0.086 | 0.107 | 0.3169 | 0.0108 |
C20:2 | 0.215 A | 0.07 B | 0.21 A | 0.0089 | 0.0336 |
C20:3n-6 | 0.016 A | 0.014 A | 0.026 B | 0.0184 | 0.0029 |
C20:4n-6 | 0.0048 A | 0.0057 A | 0.0102 B | 0.03 | 0.0014 |
C22:0 | 0.1962 | 0.175 | 0.1593 | 0.152 | 0.0129 |
C24:0 | 0.1518 A | 0.0631 B | 0.0771 B | 0.004 | 0.139 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koziorzębska, A.; Łozicki, A.; Rygało-Galewska, A.; Zglińska, K. Effect of Drying Temperature of Ambar Pumpkin on Proximate Composition and Content of Bioactive Ingredients. Appl. Sci. 2023, 13, 8302. https://doi.org/10.3390/app13148302
Koziorzębska A, Łozicki A, Rygało-Galewska A, Zglińska K. Effect of Drying Temperature of Ambar Pumpkin on Proximate Composition and Content of Bioactive Ingredients. Applied Sciences. 2023; 13(14):8302. https://doi.org/10.3390/app13148302
Chicago/Turabian StyleKoziorzębska, Agata, Andrzej Łozicki, Anna Rygało-Galewska, and Klara Zglińska. 2023. "Effect of Drying Temperature of Ambar Pumpkin on Proximate Composition and Content of Bioactive Ingredients" Applied Sciences 13, no. 14: 8302. https://doi.org/10.3390/app13148302
APA StyleKoziorzębska, A., Łozicki, A., Rygało-Galewska, A., & Zglińska, K. (2023). Effect of Drying Temperature of Ambar Pumpkin on Proximate Composition and Content of Bioactive Ingredients. Applied Sciences, 13(14), 8302. https://doi.org/10.3390/app13148302