Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixture Composition and Forming Specimens
2.3. Methods
3. Results and Discussion
3.1. Heavy Metals Content in HS, Conductivity, and pH of Composites
3.2. Thermal Conductivity
3.3. Compressive Strength
3.4. Antimicrobial Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kidalova, L.; Stevulova, N.; Terpakova, A.; Sicakova, A. Utilization of alternative materials in lightweight composites. J. Clean. Prod. 2012, 34, 116–119. [Google Scholar] [CrossRef]
- Amziane, S.; Collet, F. Bio-Aggregates Based Building Materials: State-of-the-Art; Report of the RILEM Technical Committee 236-BBM; Springer: Dordrecht, The Netherlands, 2017. [Google Scholar]
- Carus, M.; Karst, M.; Kauffmann, S.; Hobson, A.; Bertucelli, S. The European Hemp Industry: Cultivation, Processing and Applications for Fibres, Shivs and Seeds; European Industrial Hemp Association: Wolfsburg, Germany, 2013. [Google Scholar]
- Collet, F.; Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr. Build. Mater. 2014, 65, 612–619. [Google Scholar] [CrossRef] [Green Version]
- Brzyski, P.; Gładecki, M.; Rumińska, M.; Pietrak, K.; Kubiś, M.; Łapka, P. Influence of Hemp Shives Size on Hygro-Thermal and Mechanical Properties of a Hemp-Lime Composite. Materials 2020, 13, 5383. [Google Scholar] [CrossRef]
- Benfratello, S.; Capitano, C.; Peri, G.; Rizzo, G.; Scaccianoce, G.; Sorrentino, G. Thermal and structural properties of a hemp-lime biocomposite. Constr. Build. Mater. 2013, 48, 745–754. [Google Scholar] [CrossRef]
- Arnaud, L.; Gourlay, E. Experimental study of parameters influencing mechanical properties of hemp concretes. Constr. Build. Mater. 2012, 28, 50–56. [Google Scholar] [CrossRef]
- Kristombu Baduge, K.; Mendis, P.; San Nicolas, R.; Nguyen, R.; Hajimohammadi, A. Performance of lightweight hemp concrete with alkali-activated cenosphere binders exposed to elevated temperature. Constr. Build. Mater. 2019, 224, 158–172. [Google Scholar] [CrossRef]
- Sassoni, E.; Manzi, S.; Motori, A.; Montecchi, M.; Canti, M. Novel sustainable hempbased composites for application in the building industry: Physical, thermal and mechanical characterization. Energy Build. 2014, 77, 219–226. [Google Scholar] [CrossRef]
- Picandet, V. Characterization of Plant-Based Aggregates. In Bio-Aggregate-Based Building Materials: Applications to Hemp Concretes; Amziane, S., Arnaud, L., Eds.; ISTE: London, UK; Wiley: Hoboken, NJ, USA, 2013; pp. 27–73. [Google Scholar]
- Walker, R.; Pavía, S. Moisture transfer and thermal properties of hemp–lime concretes. Constr. Build. Mater. 2014, 64, 270–276. [Google Scholar] [CrossRef]
- Barbhuiya, S.; Bhusan Das, B. A Comprehensive Review on the Use of Hemp in Concrete. Constr. Build. Mater. 2022, 341, 127857. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Picandet, V.; Carre, P.; Lecompte, T.; Amziane, S.; Baley, C. Effect of Compaction on Mechanical and Thermal Properties of Hemp Concrete. Eur. J. Environ. Civ. Eng. 2010, 14, 545–560. [Google Scholar] [CrossRef]
- Elfordy, S.; Lucas, F.; Tancret, F.; Scudeller, Y.; Goudet, L. Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process. Constr. Build. Mater. 2008, 22, 2116–2123. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J. Performance improvement of hemp-shiv cementitious composites through hot water and steam treatment. Constr. Build. Mater. 2023, 367, 130315. [Google Scholar] [CrossRef]
- de Bruijn, P.B.; Jeppsson, K.H.; Sandin, K.; Nilsson, C. Mechanical properties of lime–hemp concrete containing shives and fibres. Biosyst. Eng. 2009, 103, 474–479. [Google Scholar] [CrossRef]
- Pierre Tronet, J.S.; Lecompt, T.; Picandet, V.; Baley, C. Study of lime hemp concrete (LHC)—Mix design, casting process and mechanical behaviour. Cement Concr. Compos. 2016, 67, 60–72. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Wang, L. Properties of hemp fibre reinforced concrete composites. Compos. A Appl. Sci. Manuf. 2006, 37, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Sedan, D.; Pagnoux, C.; Smith, A.; Chotard, T. Mechanical properties of hemp fibre reinforced cement: Influence of the fibre/matrix interaction. J. Eur. Ceram. Soc. 2008, 28, 183–192. [Google Scholar] [CrossRef]
- Stevulova, N.; Kidalova, L.; Cigasova, J.; Junak, J.; Sicakova, A.; Terpakova, E. Lightweight composites containing hemp Hurds. Procedia Eng. 2013, 65, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Diquéloua, Y.; Gourlay, E.; Arnaud, L.; Kurek, B. Influence of binder characteristics on the setting and hardening of hemp lightweight concrete. Constr. Build. Mater. 2016, 112, 506–517. [Google Scholar] [CrossRef]
- Pochwała, S.; Makiola, D.; Anweiler, S.; Böhm, M. The Heat Conductivity Properties of Hemp–Lime Composite Material Used in Single-Family Buildings. Materials 2020, 13, 1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Valle-Zermeno, R.; Aubert, J.E.; Laborel-Préneron, A.; Formosa, J.; Chimenos, J.M. Preliminary study of the mechanical and hygrothermal properties of hemp-magnesium phosphate cements. Constr. Build. Mater. 2016, 105, 62–68. [Google Scholar] [CrossRef]
- Pawluczuk, E.; Kalinowska-Wichrowska, K.; Soomro, M. Alkali-Activated mortars with recycled fines and hemp as a sand. Materials 2021, 14, 4580. [Google Scholar] [CrossRef] [PubMed]
- Poletanovic, B.; Dragas, J.; Ignjatovic, I.; Komljenovic, M.; Merta, I. Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars. Constr. Build. Mater. 2020, 259, 119677. [Google Scholar] [CrossRef]
- Mastali, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Carbon dioxide sequestration of fly ash alkaline-based mortars containing recycled aggregates and reinforced by hemp fibres. Constr. Build. Mater. 2018, 160, 48–56. [Google Scholar] [CrossRef]
- Ebrahim, Z.; Mastali, M.; Maguire, M. Toward sustainable lightweight durable bricks using alkali-activated hemp-based materials. Constr. Build. Mater. 2023, 369, 130609. [Google Scholar] [CrossRef]
- Khan, B.A.; Warner, P.; Wang, H. Antibacterial properties of hemp and other natural fibre plants: A review. BioResources 2014, 9, 3642–3659. [Google Scholar] [CrossRef]
- Zimniewska, M.; Pawlaczyk, M.; Romanowska, B.; Gryszczyńska, A.; Kwiatkowska, E.; Przybylska, P. Bioactive Hemp Clothing Modified with Cannabidiol (CBD) Cannabis sativa L. Extract. Materials 2021, 14, 6031. [Google Scholar] [CrossRef] [PubMed]
- Gildea, L.; Ayariga, J.A.; Ajayi, O.S.; Xu, J.; Villafane, R.; Samuel-Foo, M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022, 27, 2669. [Google Scholar] [CrossRef] [PubMed]
- EN 206:2013; Concrete—Specification, Performance, Production and Conformity. European Committee for Standardization: Brussels, Belgium, 2014.
- Gourlay, E.; Glé, P.; Marceau, S.; Foy, C.; Moscardelli, S. Effect of water content on the acoustical and thermal properties of hemp concretes. Constr. Build. Mater. 2017, 139, 513–523. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.-S. TiO2-based self-compacting glass mortar: Comparison of photocatalytic nitrogen oxide removal and bacteria inactivation. Build. Environ. 2012, 53, 1–6. [Google Scholar] [CrossRef]
- PN-EN ISO 14688-2:2018; Geotechnical Investigation and Testing—Identification and Classification of Soil—Part 2: Principles for a Classification. Polish Committee for Standardization: Warsaw, Poland, 2018.
- Asli, M.; Brachelet, F.; Sassine, E.; Antczak, E. Thermal and Hygroscopic Study of Hemp Concrete in Real Ambient Conditions. J. Build. Eng. 2021, 44, 102612. [Google Scholar] [CrossRef]
- de Bruijn, P.; Johansson, P. Moisture Fixation and Thermal Properties of Lime–Hemp Concrete. Constr. Build. Mater. 2013, 47, 1235–1242. [Google Scholar] [CrossRef]
- Mazhoud, B.; Collet, F.; Pretot, S.; Chamoin, J. Hygric and Thermal Properties of Hemp-Lime Plasters. Build. Environ. 2016, 96, 206–216. [Google Scholar] [CrossRef]
- Seng, B.; Magniont, C.; Gallego, S.; Lorente, S. Behavior of a Hemp-Based Concrete Wall under Dynamic Thermal and Hygric Solicitations. Energy Build. 2021, 232, 110669. [Google Scholar] [CrossRef]
- Seng, B.; Magniont, C.; Lorente, S. Characterization of a Precast Hemp Concrete. Part I: Physical and Thermal Properties. J. Build. Eng. 2019, 24, 100540. [Google Scholar] [CrossRef]
- García-González, J.; Pereira, A.S.; Lemos, P.C.; Almeida, N.; Silva, V.; Candeias, A.; Juan-Valdés, A.; Faria, P. Effect of surface biotreatments on construction materials. Constr. Build. Mater. 2020, 241, 118019. [Google Scholar] [CrossRef]
- Sgarlata, C.; Dal Poggetto, G.; Piccolo, F.; Catauro, M.; Traven, K.; Češsnovar, M.; Nguyen, H.; Yliniemi, J.; Barbieri, L.; Ducman, V.; et al. Antibacterial Properties and Cytotoxicity of 100% Waste Derived Alkali Activated Materials: Slags and Stone Wool-Based Binders. Front. Mater. 2021, 8, 689290. [Google Scholar] [CrossRef]
- Khan, B.A.; Wang, J.; Warner, P.; Wang, H. Antibacterial properties of hemp hurd powder against E. coli. J. Appl. Polym. Sci. 2014, 132, 41588. [Google Scholar] [CrossRef]
- Sionov, R.V.; Steinberg, D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Zimniewska, M. Hemp Fibre Properties and Processing Target Textile: A Review. Materials 2022, 15, 1901. [Google Scholar] [CrossRef]
- Chang, L.; Duan, W.; Huang, S.; Chen, A.; Li, J.; Tang, H.; Pan, G.; Deng, Y.; Zhao, L.; Li, D.; et al. Improved antibacterial activity of hemp fibre by covalent grafting of quaternary ammonium groups. R. Soc. Open Sci. 2021, 8, 201904. [Google Scholar] [CrossRef]
- Walker, R.; Pavia, S.; Mitchell, R. Mechanical properties and durability of hemp-lime concretes. Constr. Build. Mater. 2014, 61, 340–348. [Google Scholar] [CrossRef]
Concrete Designation | Type of Binder | Binder/ Shives Ratio (by Mass) | Water/ Binder Ratio (by Mass) | SP a [% of Binder Mass] | ST a [% of Water Mass] | Dry Density [kg/m3] |
---|---|---|---|---|---|---|
HC0 | 100% C a | 2.0 | 1.3 | 1.5 | 2 | 382 ± 13 |
HC1 | 100% L a | 5.3 | 0.7 | - | - | 655 ± 22 |
HC2 | 40% L a + 60% C a | 5.3 | 0.7 | 1.5 | - | 988 ± 17 |
HC3 | 100% C a | 5.3 | 0.7 | 1.5 | 2 | 1026 ± 11 |
Ca [g/kg] | Mg [g/kg] | Na [g/kg] | K [g/kg] | Cr [mg/kg] | Hg [mg/kg] | Fe [g/kg] | Zn [mg/kg] | Cu [mg/kg] | Mn [mg/kg] | Ni [mg/kg] | Pb [mg/kg] | Cd [mg/kg] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2.539 | 0.979 | 0.205 | 1.082 | 16.286 | 0.100 | 0.287 | 41.181 | 0.767 | 8.200 | 3.856 | (1) | 0.158 |
Specimen | pH | Average Conductivity [mS/cm] | Residue after Roasting at 650 °C | |
---|---|---|---|---|
Organic Substances [%] | Mineral Substances [%] | |||
HS | 6.32 | 0.48 | 98.53 | 1.47 |
HC0 | 11.74 | 3.80 | 40.37 | 59.63 |
HC1 | 12.32 | 8.59 | 24.42 | 75.58 |
HC2 | 12.29 | 7.42 | 22.71 | 77.29 |
HC3 | 12.25 | 5.95 | 23.12 | 76.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horszczaruk, E.; Strzałkowski, J.; Głowacka, A.; Paszkiewicz, O.; Markowska-Szczupak, A. Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate. Appl. Sci. 2023, 13, 8447. https://doi.org/10.3390/app13148447
Horszczaruk E, Strzałkowski J, Głowacka A, Paszkiewicz O, Markowska-Szczupak A. Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate. Applied Sciences. 2023; 13(14):8447. https://doi.org/10.3390/app13148447
Chicago/Turabian StyleHorszczaruk, Elżbieta, Jarosław Strzałkowski, Anna Głowacka, Oliwia Paszkiewicz, and Agata Markowska-Szczupak. 2023. "Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate" Applied Sciences 13, no. 14: 8447. https://doi.org/10.3390/app13148447
APA StyleHorszczaruk, E., Strzałkowski, J., Głowacka, A., Paszkiewicz, O., & Markowska-Szczupak, A. (2023). Investigation of Durability Properties for Lightweight Structural Concrete with Hemp Shives Instead of Aggregate. Applied Sciences, 13(14), 8447. https://doi.org/10.3390/app13148447