Inverse Q-Filtering as a Tool for Seismic Resolution Enhancement: A Case Study from the Carpathian Foredeep
Abstract
:1. Introduction
2. Geological Setting
3. Input Data—Wells and Seismic
4. Methods
4.1. Q Estimation
4.1.1. Spectral Ratio
4.1.2. Travel Time Dispersion
4.2. Inverse Q Filtering and Active Seismic Data Processing
- Amplitude Q-related effects
- Phase Q-related effects
- Both phase and amplitude Q-related effects
- The processing flow should not include processes that modify the amplitude spectrum of the wavelet based on the seismic data spectrum, e.g., spectral whitening, or wavelet shaping, or data driven gains such as AGC (Automatic Gain Control) or similar.
- Random noise should be attenuated, as should coherent noise as much as possible. Noise present in the data will be boosted, and potentially over boosted, by the Q-compensation correction.
- Multiples should be attenuated as these have a different travel path and dispersion to the primaries.
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mavko, G.; Kjartansson, E.; Winkler, K. Seismic wave attenuation in rocks. Rev. Geophys. 1979, 17, 1155–1164. [Google Scholar] [CrossRef]
- Klimentos, T. Attenuation of P- and S-waves as a method of distinguishing gas from oil and water. SEG Annu. Meet. 1990, 60, 102–105. [Google Scholar] [CrossRef]
- Tan, Y.; Chai, C.; Engelder, T. Use of S-wave attenuation from perforation shots to map the growth of the stimulated reservoir volume in the Marcellus gas shale. Lead. Edge 2014, 33, 1090–1096. [Google Scholar] [CrossRef] [Green Version]
- Ou, L.; Prasad, M. Ultrasonic anisotropic P-wave attenuation of shales under elevated pressures. In Proceedings of the SEG International Exposition and Annual Meeting 2016, Dallas, TX, USA, 16–21 October 2016; pp. 3261–3266. [Google Scholar]
- Zhang, Z.; Du, J.; Mavko, G.M. Reservoir characterization using perforation shots: Anisotropy, attenuation and uncertainty analysis. Geophys. J. Int. 2019, 216, 470–485. [Google Scholar] [CrossRef]
- Park, J.; Choi, J.; Seol, S.J.; Byun, J.; Kim, Y. A method for adequate selection of training data sets to reconstruct seismic data using a convolutional U-Net. Geophysics 2021, 86, V375–V388. [Google Scholar] [CrossRef]
- Ulrych, T.J. Application of homomorphic deconvolution to seismology. Geophysics 1971, 36, 650–660. [Google Scholar] [CrossRef]
- Rosa, A.L.R.; Ulrych, T.J. Processing via spectral modeling. Geophysics 1991, 56, 1244. [Google Scholar] [CrossRef]
- Gholami, A.; Sacchi, M.D. A fast and automatic sparse deconvolution in the presence of outliers. IEEE Trans. Geosci. Rem. Sens. 2012, 50, 4105–4116. [Google Scholar] [CrossRef]
- Canning, A.; Moulière-Reiser, D.; Weiss, Y.; Malkin, A.; Philip, E.; Grinberg, N.; Teitel, A.; Reznikov, M.; Yehezkel, V. Neural Networks Approach to Spectral Enhancement. SEG Tech. Program Expand. Abstr. 2017, 4283–4286. [Google Scholar]
- Choi, Y.; Seol, S.J.; Byun, J.; Kim, Y. Vertical Resolution Enhancement of Seismic Data with Convolutional U-Net. SEG Tech. Program Expand. Abstr. 2019, 2388–2392. [Google Scholar]
- Oszczypko, N. Powstanie i rozwój polskiej czêœci zapadliska przedkarpackiego. Przegląd Geol. 2006, 54, 396–403. [Google Scholar]
- Oszczypko, N. The Early-Middle Miocene Carpathian peripheral foreland basin (Western Carpathians, Poland). Przegląd Geol. 1997, 45, 1054–1063. [Google Scholar]
- Oszczypko, N. The W estern Carpathian foredeep-developm ent of the foreland basin in front of the accretionary wedge and its burial history (Poland). Geol. Carpathica 1998, 49, 1–18. [Google Scholar]
- Wdowiarz, S. O stosunku Karpat do zapadliska przedkarpackiego w Polsce. Przegląd Geol. 1976, 24, 350–357. [Google Scholar]
- Oszczypko, N.; Tomaś, A. Tectonic evolution of marginal part of the Polish Flysch Carpathians in the Middle Miocene. Kwart. Geol. 1985, 29, 109–128. [Google Scholar]
- Oszczypko, N. The structural position and tectonosedimentary evolution of the Polish Outer Carpathians. Przegląd Geol. 2004, 52, 780–791. [Google Scholar]
- Oszczypko, N.; Zając, R.; Garlicka, I.; Menèik, E.; Dvorak, J.; Matejovska, O. Geological map of the substratum of the Tertiary of the Western Outer Carpathians and their foreland. In Geological Atlas of the Western Outer Carpathians and Their Foreland; Poprawa, D., Nemcok, J., Eds.; Państwowy Instytut Geologiczny: Warszawa, Poland, 1989. [Google Scholar]
- Oszczypko, N.; Krzywiec, P.; Popadyuk, I.; Peryt, T. Carpathian Foredeep Basin (Poland and Ukraine)—Its sedimentary, structural and geodynamic evolution. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources: AAPG Memoir; Golonka, J., Picha, F.J., Eds.; AAPG: Tulsa, MA, USA, 2005; Volume 84, pp. 293–350. [Google Scholar]
- Myśliwiec, M. The Miocene reservoir rocks of the Carpathian Foredeep. Przegląd Geol. 2004, 52, 581–592. [Google Scholar]
- Krzywiec, P. Geodynamic and tectonic control on evolution of foreland basins, with references to the Carpathian Foredeep Basin. Przegląd Geol. 2006, 54, 404–412. [Google Scholar]
- Ney, R.; Burzewski, W.; Bachleda, T.; Górecki, W.; Jakóbczak, K.; Słupczyński, K. Zarys Paleogeografii i Rozwoju Litologiczno-Facjalnego Utworów Miocenu Zapadliska Przedkarpackiego; Komisja Nauk Geologicznych PAN Oddział w Katowicach: Warsaw, Poland, 1974; 65p. [Google Scholar]
- Kotlarczyk, J. An outline of the stratigraphy of Marginal Tectonic Units of the Carpathian Orogene in the Rzeszów-Przemysl area. In Geotraverse Kraków-Baranów-Rzeszów-Przemysl-Komancza-Dukla: Guide to Excursion 4; Kotlarczyk, J., Ed.; Carpatho-Balkan Geological Association, Congress: Cracow, Poland, 1985; Volume XIII, pp. 21–32. [Google Scholar]
- Połtowicz, S. Jednostka stebnicka i zgłobicka w budowie Karpat Polskich. Geol. Kwart. AGH 2004, 30, 85–120. [Google Scholar]
- Krzywiec, P. Mioceńska ewolucja tektoniczna wschodniej części zapadliska przedkarpackiego (Przemyśl–Lubaczów) w œwietle interpretacji danych sejsmicznych. Prace Państw. Inst. Geol. 1999, 168, 249–276. [Google Scholar]
- Krzywiec, P. Contrasting tectonic and sedimentary history of the central and eastern parts of the Polish Carpathian Foredeep Basin—Results of seismic data interpretation. Mar. Pet. Geol. 2001, 18, 13–38. [Google Scholar] [CrossRef]
- Krzywiec, P.; Aleksandrowski, P.; Ryzner-Siupik, B.; Papiernik, B.; Siupik, J.; Mastalerz, K.; Wysocka, A.; Kasiñski, J. Budowa geologiczna i geneza mioceñskiego zrêbu Ryszkowej Woli w rejonie Sieniawy–Rudki (wschodnia czêœæ zapadliska przedkarpackiego)—Wyniki interpretacji danych sejsmiki 3D. Przegląd Geol. 2005, 53, 656–663. [Google Scholar]
- Bath, M. Spectral Analysis in Geophysics (Developments in Solid Earth Geophysics); Elsevier Science Publishing Co.: Amsterdam, The Netherlands, 1974; Volume 7. [Google Scholar]
- Tonn, R. The determination of seismic quality factor Q from VSP data: A comparison of different computational methods. Geophys. Prosp. 1991, 39, 1–27. [Google Scholar] [CrossRef]
- Haase, A.B.; Stewart, R.R. Q-factor estimation from borehole seismic data: Ross Lake, Saskatchewan. CREWES Res. Rep. 2003, 15, 1–7. [Google Scholar]
- Cheng, P.; Margrave, G.F. Q analysis using synthetic viscoacoustic seismic data. CREWES Res. Rep. 2009, 21, 1–11. [Google Scholar]
- Cheng, P.; Margrave, G.F. A match-filter method for Q estimation. In Proceedings of the SEG 2012 annual meeting, Las Vegas, NV, USA, 4–7 November 2012. [Google Scholar]
- Wang, Y. Inverse Q-filter for seismic resolution enhancement. Geophysics 2006, 71, V51–V60. [Google Scholar] [CrossRef] [Green Version]
- Cui, T. Improving Seismic-to-Well Ties. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2015. [Google Scholar] [CrossRef]
- Margrave, G.F. Why seismic-to-well ties are difficult. In 25th Annual Report of the CREWES Project; CREWES: Calgary, AB, Canada, 2013; Volume 25. [Google Scholar]
- Futterman, W.I. Dispersive body waves. J. Geophys. Res. 1962, 67, 5279–5291. [Google Scholar] [CrossRef]
- Hale, D. Q-adaptive Deconvolution. In SEG Technical Program Expanded Abstracts; Stanford Exploration Project, Report No. 30; Society of Exploration Geophysicists: Houston, TX, USA, 1982; pp. 133–158. [Google Scholar]
- Hargreaves, N.D.; Calvert, A.J.; Hirsche, W.K. A Fast Inverse Q-Filter. In Proceedings of the 1987 SEG Conference, New Orleans, LA, USA, 11–15 October 1987. [Google Scholar]
- Schafer, R. What Is a Savitzky-Golay Filter? [Lecture Notes]. IEEE Signal Process. Mag. 2011, 28, 111–117. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łapinkiewicz, A.P.; Martuś, M.; Wachowicz-Pyzik, A.; Cygal, A.; Maćkowski, T.; Stefaniuk, M. Inverse Q-Filtering as a Tool for Seismic Resolution Enhancement: A Case Study from the Carpathian Foredeep. Appl. Sci. 2023, 13, 8564. https://doi.org/10.3390/app13158564
Łapinkiewicz AP, Martuś M, Wachowicz-Pyzik A, Cygal A, Maćkowski T, Stefaniuk M. Inverse Q-Filtering as a Tool for Seismic Resolution Enhancement: A Case Study from the Carpathian Foredeep. Applied Sciences. 2023; 13(15):8564. https://doi.org/10.3390/app13158564
Chicago/Turabian StyleŁapinkiewicz, Artur Piotr, Michał Martuś, Anna Wachowicz-Pyzik, Adam Cygal, Tomasz Maćkowski, and Michał Stefaniuk. 2023. "Inverse Q-Filtering as a Tool for Seismic Resolution Enhancement: A Case Study from the Carpathian Foredeep" Applied Sciences 13, no. 15: 8564. https://doi.org/10.3390/app13158564
APA StyleŁapinkiewicz, A. P., Martuś, M., Wachowicz-Pyzik, A., Cygal, A., Maćkowski, T., & Stefaniuk, M. (2023). Inverse Q-Filtering as a Tool for Seismic Resolution Enhancement: A Case Study from the Carpathian Foredeep. Applied Sciences, 13(15), 8564. https://doi.org/10.3390/app13158564