Luminescent Materials: Synthesis, Characterization and Applications
Conflicts of Interest
References
- Blasse, G.; Grabmaier, B.C. Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994; ISBN 978-3-540-58019-5. [Google Scholar]
- Brik, M.G.; Srivastava, A.M. (Eds.) Luminescent Materials: Fundamentals and Applications; De Gruyter: Berlin, Germany, 2023; ISBN 9783110607871. [Google Scholar]
- Lastusaari, M.; Laamanen, T.; Malkamäki, M.; Eskola, K.O.; Kotlov, A.; Carlson, S.; Welter, E.; Brito, H.F.; Bettinelli, M.; Jungner, H.; et al. The Bologna Stone: History’s first persistent luminescent material. Eur. J. Mineral. 2012, 24, 885–890. [Google Scholar] [CrossRef] [Green Version]
- Hölsä, J. Persistent Luminescence Beats the Afterglow: 400 Years of Persistent Luminescence. Electrochem. Soc. Interface 2009, 18, 42–45. [Google Scholar] [CrossRef]
- Zhuo, Y.; Brgoch, J. Opportunities for Next-Generation Luminescent Materials through Artificial Intelligence. J. Phys. Chem. Lett. 2021, 12, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Li, Y.; Ding, W.; Xu, L.; Ma, Y.; Zhang, L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. Nano-Micro Lett. 2020, 12, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bednarkiewicz, A.; Drabik, J.; Trejgis, K.; Jaque, D.; Ximendes, E.; Marciniak, L. Luminescence based temperature bio-imaging: Status, challenges, and perspectives. Appl. Phys. Rev. 2021, 8, 011317. [Google Scholar] [CrossRef]
- Kang, F.; Sun, G.; Boutinaud, P.; Wu, H.; Ma, F.-X.; Lu, J.; Gan, J.; Bian, H.; Gao, F.; Xiao, S. Recent advances and prospects of persistent luminescent materials as inner secondary self-luminous light source for photocatalytic applications. Chem. Eng. J. 2021, 403, 126099. [Google Scholar] [CrossRef]
- Rodrigues, J.; Pereira, S.O.; Zanoni, J.; Rodrigues, C.; Brás, M.; Costa, F.M.; Monteiro, T. ZnO Transducers for Photoluminescence-Based Biosensors: A Review. Chemosensors 2022, 10, 39. [Google Scholar] [CrossRef]
- Ben Sedrine, N.; Rodrigues, J.; Faye, D.N.; Neves, A.J.; Alves, E.; Bockowski, M.; Hoffmann, V.; Weyers, M.; Lorenz, K.; Correia, M.R.; et al. Eu-Doped AlGaN/GaN Superlattice-Based Diode Structure for Red Lighting: Excitation Mechanisms and Active Sites. ACS Appl. Nano Mater. 2018, 1, 3845–3858. [Google Scholar] [CrossRef]
- Suo, H.; Zhu, Q.; Zhang, X.; Chen, B.; Chen, J.; Wang, F. High-security anti-counterfeiting through upconversion luminescence. Mater. Today Phys. 2021, 21, 100520. [Google Scholar] [CrossRef]
- Poelman, D.; Van der Heggen, D.; Du, J.; Cosaert, E.; Smet, P.F. Persistent phosphors for the future: Fit for the right application. J. Appl. Phys. 2020, 128, 240903. [Google Scholar] [CrossRef]
- Batista, M.S.; Rodrigues, J.; Relvas, M.S.; Zanoni, J.; Girão, A.V.; Pimentel, A.; Costa, F.M.; Pereira, S.O.; Monteiro, T. Optical Studies in Red/NIR Persistent Luminescent Cr-Doped Zinc Gallogermanate (ZGGO:Cr). Appl. Sci. 2022, 12, 2104. [Google Scholar] [CrossRef]
- Qiao, Z.; Wang, X.; Heng, C.; Jin, W.; Ning, L. Exploring Intrinsic Electron-Trapping Centers for Persistent Luminescence in Bi3+-Doped LiREGeO4 (RE=Y, Sc, Lu): Mechanistic Origin from First-Principles Calculations. Inorg. Chem. 2021, 60, 16604–16613. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Lu, Y.-Y.; Liu, F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 2012, 11, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Bessière, A.; Durand, J.-O.; Noûs, C. Persistent luminescence materials for deep photodynamic therapy. Nanophotonics 2021, 10, 2999–3029. [Google Scholar] [CrossRef]
- Chi, F.; Wei, X.; Jiang, B.; Chen, Y.; Duan, C.; Yin, M. Luminescence properties and the thermal quenching mechanism of Mn2+ doped Zn2GeO4 long persistent phosphors. Dalt. Trans. 2018, 47, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Bettinelli, M.; Carlos, L.; Liu, X. Lanthanide-doped upconversion nanoparticles. Phys. Today 2015, 68, 38–44. [Google Scholar] [CrossRef]
- Zhang, F. General Introduction to Upconversion Luminescence Materials. In Photon Upconversion Nanomaterials; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–20. [Google Scholar]
- Li, S.; Wei, X.; Li, S.; Zhu, C.; Wu, C. Up-Conversion Luminescent Nanoparticles for Molecular Imaging, Cancer Diagnosis and Treatment. Int. J. Nanomed. 2020, 15, 9431–9445. [Google Scholar] [CrossRef] [PubMed]
- Gamelin, D.R.; Güdel, H.U. Design of Luminescent Inorganic Materials: New Photophysical Processes Studied by Optical Spectroscopy. Acc. Chem. Res. 2000, 33, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Armaroli, N.; Bolink, H.J. Luminescence: The Never-Ending Story. Top. Curr. Chem. 2016, 374, 44. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues, J. Luminescent Materials: Synthesis, Characterization and Applications. Appl. Sci. 2023, 13, 8705. https://doi.org/10.3390/app13158705
Rodrigues J. Luminescent Materials: Synthesis, Characterization and Applications. Applied Sciences. 2023; 13(15):8705. https://doi.org/10.3390/app13158705
Chicago/Turabian StyleRodrigues, Joana. 2023. "Luminescent Materials: Synthesis, Characterization and Applications" Applied Sciences 13, no. 15: 8705. https://doi.org/10.3390/app13158705
APA StyleRodrigues, J. (2023). Luminescent Materials: Synthesis, Characterization and Applications. Applied Sciences, 13(15), 8705. https://doi.org/10.3390/app13158705