Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters
Abstract
:1. Introduction
- A modified extended complex Kalman filter is presented to improve the filter’s performance for estimating symmetrical components in the presence of DC offset and noise.
- Harmonic free current references are calculated based on the estimated positive and negative symmetrical components of grid voltages for both ECKF strategies. The finite control set model predictive control (FCS-MPC) current control structure is presented such that the grid currents follow exactly the pure sinusoidal current references generated by the current reference generator.
- The principle of FCS-MPC is to drive the converter switches by minimizing the cost function without the need for PWM techniques. As a result, FCS_MPC features a simple real-time hardware implementation, a quick response, a higher stability margin, and the ability to handle of multiple objectives and nonlinear constraints [44].
2. Problem Statement
3. Mathematical Modelling
3.1. Conventional Extended Complex Kalman Filter
3.2. Modified Extended Complex Kalman Filter
4. Current Control Structure
5. Simulation Results
6. Experimental Validation
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Meral, M.E.; Çelík, D. A comprehensive survey on control strategies of distributed generation power systems under normal and abnormal conditions. Annu. Rev. Control 2019, 47, 112–132. [Google Scholar] [CrossRef]
- Verma, A.K.; Jarial, R.K.; Roncero-Sanchez, P.; Ungarala, M.R.; Guerrero, J.M. An Improved Hybrid Prefiltered Open-Loop Algorithm for Three-Phase Grid Synchronization. IEEE Trans. Ind. Electron. 2020, 68, 2480–2490. [Google Scholar] [CrossRef]
- Chedjara, Z.; Massoum, A.; Wira, P.; Safa, A.; Gouichiche, A. A fast and robust reference current generation algorithm for three-phase shunt active power filter. Int. J. Power Electron. Drive Syst. IJPEDS 2022, 12, 121. [Google Scholar] [CrossRef]
- Ahmed, H.; Çelik, D. Sliding mode based adaptive linear neuron proportional resonant control of Vienna rectifier for performance improvement of electric vehicle charging system. J. Power Sources 2022, 542, 231788. [Google Scholar] [CrossRef]
- Safa, A.; Gouichiche, A.; Verma, A.K.; Su, C.-L.; Chedjara, Z.; Messlem, Y.; Berkouk, E.M. Open Loop Synchronization Techniques Benchmarking for Distributed Energy Sources Connection. IEEE Access 2022, 10, 63554–63566. [Google Scholar] [CrossRef]
- Çelik, D. Lyapunov based harmonic compensation and charging with three phase shunt active power filter in electrical vehicle applications. Int. J. Electr. Power Energy Syst. 2022, 136, 107564. [Google Scholar] [CrossRef]
- Al-Majidi, S.D.; Al-Nussairi, M.K.; Mohammed, A.J.; Dakhil, A.M.; Abbod, M.F.; Al-Raweshidy, H.S. Design of a Load Frequency Controller Based on an Optimal Neural Network. Energies 2022, 15, 6223. [Google Scholar] [CrossRef]
- Lubura, S.; Šoja, M.; Lale, S.; Ikić, M. Single-phase phase locked loop with DC offset and noise rejection for photovoltaic inverters. IET Power Electron. 2014, 7, 2288–2299. [Google Scholar] [CrossRef]
- Basso, T. IEEE standard for interconnecting distributed resources with the electric power system. In Proceedings of the IEEE Pes Meeting, College Station, TX, USA, 30 March–1 April 2004; p. 1. [Google Scholar]
- Gonzalez, R.; Lopez, J.; Sanchis, P.; Marroyo, L. Transformerless Inverter for Single-Phase Photovoltaic Systems. IEEE Trans. Power Electron. 2007, 22, 693–697. [Google Scholar] [CrossRef]
- Xiaoqiang, G.; Herong, G.; Guocheng, S. DC injection control for grid-connected inverters based on virtual capacitor concept. In Proceedings of the 2008 International Conference on Electrical Machines and Systems, Wuhan, China, 17–20 October 2008; pp. 2327–2330. [Google Scholar]
- Armstrong, M.; Atkinson, D.J.; Johnson, C.M.; Abeyasekera, T.D. Auto-calibrating DC link current sensing technique for transformerless, grid connected, H-bridge inverter systems. IEEE Trans. Power Electron. 2006, 21, 1385–1393. [Google Scholar] [CrossRef]
- Bowtell, L.; Ahfock, A. Direct current offset controller for transformerless single-phase photovoltaic grid-connected in-verters. IET Renew. Power Gener. 2010, 4, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Buticchi, G.; Lorenzani, E.; Franceschini, G. A DC Offset Current Compensation Strategy in Transformerless Grid-Connected Power Converters. IEEE Trans. Power Deliv. 2011, 26, 2743–2751. [Google Scholar] [CrossRef]
- Guofeng, H.; Xu, D. A novel DC loop current control strategy for paralleled UPS inverter system based on decoupled control scheme. In Proceedings of the 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012; pp. 70–75. [Google Scholar] [CrossRef]
- Ahfock, T.L.; Bowtell, L. DC offset elimination in a single-phase grid-connected photovoltaic system. In Proceedings of the 16th Australasian Universities Power Engineering Conference (AUPEC 2006), Melbourne, VIC, Canada, 10–13 December 2006. [Google Scholar]
- Menniti, D.; Pinnarelli, A. A novel compensation approach for DC current component in a grid-connected photovoltaic generation system. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012. [Google Scholar] [CrossRef]
- Song, W.; Feng, X.; Smedley, K.M. A Carrier-Based PWM Strategy with the Offset Voltage Injection for Single-Phase Three-Level Neutral-Point-Clamped Converters. IEEE Trans. Power Electron. 2012, 28, 1083–1095. [Google Scholar] [CrossRef]
- Yan, Q.; Wu, X.; Yuan, X.; Geng, Y.; Zhang, Q. Minimization of the DC Component in Transformerless Three-Phase Grid-Connected Photovoltaic Inverters. IEEE Trans. Power Electron. 2014, 30, 3984–3997. [Google Scholar] [CrossRef]
- Chung, D.-W.; Sul, S.-K. Analysis and compensation of current measurement error in vector-controlled AC motor drives. IEEE Trans. Ind. Appl. 1998, 34, 340–345. [Google Scholar] [CrossRef]
- Jung, H.-S.; Hwang, S.-H.; Kim, J.-M.; Kim, C.-U.; Choi, C. Diminution of current-measurement error for vector-controlled AC motor drives. IEEE Trans. Ind. Appl. 2006, 42, 1249–1256. [Google Scholar] [CrossRef]
- Trinh, Q.N.; Wang, P.; Tang, Y.; Choo, F.H. Mitigation of DC and Harmonic Currents Generated by Voltage Measurement Errors and Grid Voltage Distortions in Transformerless Grid-Connected Inverters. IEEE Trans. Energy Convers. 2017, 33, 801–813. [Google Scholar] [CrossRef]
- He, G.; Xu, D.; Chen, M. A Novel Control Strategy of Suppressing DC Current Injection to the Grid for Single-Phase PV Inverter. IEEE Trans. Power Electron. 2014, 30, 1266–1274. [Google Scholar] [CrossRef]
- Suzuki, S.; Yoshida, M. Elevator Control Apparatus with Compensation for Current Sensor Offset Voltage. U.S. Patent 5,407,027, 18 April 1995. [Google Scholar]
- Wang, Y.F.; Li, Y.W. Grid synchronization PLL based on cascaded delayed signal cancellation. IEE Proc. Electr. Power Appl. 2010, 26, 1987–1997. [Google Scholar] [CrossRef]
- Mellouli, M.; Hamouda, M.; Slama, J.B.H.; Al-Haddad, K. A Third-Order MAF Based QT1-PLL That is Robust Against Harmonically Distorted Grid Voltage With Frequency Deviation. IEEE Trans. Energy Convers. 2021, 36, 1600–1613. [Google Scholar] [CrossRef]
- Du, L.; Li, M.; Tang, Z.; Xiong, L.; Ma, X.; Tang, G. A Fast Positive Sequence Components Extraction Method with Noise Immunity in Unbalanced Grids. IEEE Trans. Power Electron. 2019, 35, 6682–6685. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Xiao, L.; Hu, Y.; Wu, Q.; Liu, Z. An αβ-Frame Moving Average Filter to Improve the Dynamic Performance of Phase-Locked Loop. IEEE Access 2020, 8, 180661–180671. [Google Scholar] [CrossRef]
- Liu, X.; Wu, B.; Xiu, L. A Fast Positive-Sequence Component Extraction Method with Multiple Disturbances in Unbalanced Conditions. IEEE Trans. Power Electron. 2022, 37, 8820–8824. [Google Scholar] [CrossRef]
- Al-Majidi, S.D.; Abbod, M.F.; Al-Raweshidy, H.S. Maximum Power Point Tracking Technique based on a Neural-Fuzzy Approach for Stand-alone Photovoltaic System. In Proceedings of the 55th International Universities Power Engineering Conference, Torino, Italy, 1–4 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Li, X.; Lin, H. A Design Method of Phase-Locked Loop for Grid-Connected Converters Considering the Influence of Current Loops in Weak Grid. IEEE J. Emerg. Sel. Top. Power Electron. 2019, 8, 2420–2429. [Google Scholar] [CrossRef]
- Zhu, D.; Zhou, S.; Zou, X.; Kang, Y. Improved Design of PLL Controller for LCL-Type Grid-Connected Converter in Weak Grid. IEEE Trans. Power Electron. 2019, 35, 4715–4727. [Google Scholar] [CrossRef]
- Guo, X.; Wu, W.; Chen, Z. Multiple-Complex Coefficient-Filter-Based Phase-Locked Loop and Synchronization Technique for Three-Phase Grid-Interfaced Converters in Distributed Utility Networks. IEEE Trans. Ind. Electron. 2010, 58, 1194–1204. [Google Scholar] [CrossRef]
- Karimi-Ghartemani, M.; Iravani, M.R. A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments. IEEE Trans. Power Syst. 2004, 19, 1263–1270. [Google Scholar] [CrossRef]
- Teodorescu, R.; Liserre, M.; Rodríguez, P. Grid synchronization in threephase power converters. In Grid Converters for Photovoltaic and Wind Power Systems; IEEE: Piscataway, NJ, USA, 2007; pp. 169–204. [Google Scholar]
- Jin, N.; Gan, C.; Guo, L. Predictive Control of Bidirectional Voltage Source Converter with Reduced Current Harmonics and Flexible Power Regulation Under Unbalanced Grid. IEEE Trans. Energy Convers. 2017, 33, 1118–1131. [Google Scholar] [CrossRef]
- Nishiyama, K. A nonlinear filter for estimating a sinusoidal signal and its parameters in white noise: On the case of a single sinusoid. IEEE Trans. Signal Process. 1997, 45, 970–981. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.; Panda, G.; Pradhan, A.; Routray, A.; Duttagupta, B. An extended complex Kalman filter for frequency measurement of distorted signals. EEE Trans. Instrum. Meas. 2002, 49, 746–753. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.K.; Pradhan, A.K.; Panda, G. Frequency estimation of distorted power system signals using extended complex Kalman filter. IEEE Trans. Power Deliv. 1999, 14, 761–766. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-H.; Lee, C.-H.; Shih, K.-J.; Wang, Y.-J. Frequency Estimation of Distorted Power System Signals Using a Robust Algorithm. IEEE Trans. Power Deliv. 2007, 23, 41–51. [Google Scholar] [CrossRef]
- Ahmed, K.; Massoud, A.; Finney, S.; Williams, B.J.I.P.E. Autonomous adaptive sensorless controller of inverter-based islanded-distributed generation system. IET Power Electron. 2009, 2, 256–266. [Google Scholar] [CrossRef]
- Andrew, E.T.; Ahmed, K.H.; Holliday, D. A New Model Predictive Current Controller for Grid-Connected Converters in Unbalanced Grids. IEEE Trans. Power Electron. 2022, 37, 9175–9186. [Google Scholar] [CrossRef]
- El-Nagar, M.; Elattar, O.; Ahmed, K.; Hamdan, E.; Abdel-Khalik, A.S.; Hamad, M.S.; Ahmed, S. Space vector-based model predictive current controller for grid-connected converter under unbalanced and distorted grid without a phase-locked loop. Alex. Eng. J. 2023, 77, 265–281. [Google Scholar] [CrossRef]
- Pérez-Guzmán, R.E.; Rivera, M.; Wheeler, P.W. Recent advances of predictive control in power converters. In Proceedings of the 2020 IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 6–28 February 2020; pp. 1100–1105. [Google Scholar]
Parameters | Symbol | Value (Unit) |
---|---|---|
Grid phase voltage (RMS) | 28 V | |
Grid fundamental frequency | 50 Hz | |
Switching frequency | 10 kHz | |
DC link voltage | 100 V | |
Filter Inductance | L | 6.7 mH |
Filter Resistance | R | 1.6 Ω |
−0.02 | +2.5 | ||
−0.08 | −2 | ||
+0.08 | −1.5 |
Conventional ECKF | Modified ECKF | Reduction Percentage | |||
---|---|---|---|---|---|
7.81 | 1.58 | Reduction | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Nagar, M.; Ahmed, K.; Hamdan, E.; Abdel-Khalik, A.S.; Hamad, M.S.; Ahmed, S. Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters. Appl. Sci. 2023, 13, 9023. https://doi.org/10.3390/app13159023
El-Nagar M, Ahmed K, Hamdan E, Abdel-Khalik AS, Hamad MS, Ahmed S. Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters. Applied Sciences. 2023; 13(15):9023. https://doi.org/10.3390/app13159023
Chicago/Turabian StyleEl-Nagar, Mohammed, Khaled Ahmed, Eman Hamdan, Ayman S. Abdel-Khalik, Mostafa S. Hamad, and Shehab Ahmed. 2023. "Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters" Applied Sciences 13, no. 15: 9023. https://doi.org/10.3390/app13159023
APA StyleEl-Nagar, M., Ahmed, K., Hamdan, E., Abdel-Khalik, A. S., Hamad, M. S., & Ahmed, S. (2023). Modified Extended Complex Kalman Filter for DC Offset and Distortion Rejection in Grid-Tie Transformerless Converters. Applied Sciences, 13(15), 9023. https://doi.org/10.3390/app13159023