Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Monitoring of the Transport of Suspended Sediment in the River Drava in Slovenia
3.1.1. Suspended-Sediment Samplers
3.1.2. Acoustic Method
4. Results and Discussion
4.1. Suspended-Sediment Dynamics at Average Discharge
4.2. Prediction of Suspended-Sediment Transport
4.2.1. Q/c Curve
4.2.2. Annual Quantities of Suspended Sediments
4.2.3. Studenška Brv, Maribor Measuring Site
4.3. High-Water Event Dynamics of Suspended-Sediment Concentration
4.4. Possible Measures for the Management of Suspended Sediment in the River Drava
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- DHV Consultants; Delft Hydraulics. Sediment Transport Measurements; Delft: Delft, The Netherlands, 2003; Volume 5. [Google Scholar]
- Habersack, H. Schwebstoffe im Fliessgwaesser; Bundesministerium für Land und Forstwirtschaft, Umwelt und Wasserwirtschaft: Wien, Austria, 2008. [Google Scholar]
- Lick, W. Sediment and Contaminant Transport in Surface Waters; Willey: Hoboken, NJ, USA, 2009. [Google Scholar]
- Mikoš, M. Metode Terenskih Meritev Suspendiranih Sedimentov v Rekah. Gradb. Vestn. 2012, 61, 151–158. [Google Scholar]
- Khan, A.A.; Wu, W. Sediment Transport: Monitoring, Modeling and Management; Nova Science Publishers: Hauppauge, NY, USA, 2013; ISBN 9781626186835. [Google Scholar]
- Vercruysse, K.; Grabowski, R.C.; Rickson, R.J. Suspended Sediment Transport Dynamics in Rivers: Multi-Scale Drivers of Temporal Variation. Earth-Sci. Rev. 2017, 166, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Ulaga, F. Monitoring Suspendiranega Materiala v Slovenskih Rekah. Acta Hydrotech. 2005, 23/39, 117–128. [Google Scholar]
- Ulaga, F. Vsebnost in Premeščanje Suspendiranega Materiala v Slovenskih Rekah. Agencija Repub. Slov. Okolje 2005, 1–7. [Google Scholar]
- Ulaga, F. Transport Suspendiranega Materiala v Slovenskih Rekah/Suspended Sediment Transportation in Slovene Rivers. Ujma 2006, 20, 144–150. [Google Scholar]
- Gregorc, B. Spremljanje Vsebnosti Suspendiranega Materiala v Rečni Vodi Drave s Pomočjo On-Line Meritev. Ekolist 2010, 10, 8–10. [Google Scholar]
- Dolinar, B. Suspendirani Sedimenti v Reki Dravi. Gradb. Vestn. 2014, 63, 94–100. [Google Scholar]
- Bezak, N.; Šraj, M.; Mikoš, M. Pregled Meritev Vsebnosti Suspendiranega Materiala v Sloveniji in Primer Analize Podatkov. Gradb. Vestn. 2013, 62, 274–280. [Google Scholar]
- Knapič, M.; Ulaga, F.; Preglau, A. Upravljanje S Sedimenti V Akumulacijskih Bazenih Hidroelektrarn Na Reki Dravi: Predstavitev Pilotnega Projekta Plavljenja Sedimentov V Matico. Mišičev Vodarski Dan 2019, 171–176. [Google Scholar]
- Williams, G.P. Sediment Concentration Versus Water Discharge During Single Event. J. Hydrol. 1989, 111, 89–106. [Google Scholar] [CrossRef]
- Asselman, N.E.M. Suspended Sediment Dynamics in a Large Drainage Basin: The River Rhine. Hydrol. Process. 1999, 13, 1437–1450. [Google Scholar] [CrossRef]
- Bogen, J. The Hysteresis Effect of Sediment Transport Systems. Nor. Geogr. Tidsskr. Nor. J. Geogr. 1980, 34, 45–54. [Google Scholar] [CrossRef]
- Bača, P. Hysteresis Effect in Suspended Sediment Concentration in the Rybárik Basin, Slovakia/Effet d’hystérèse Dans La Concentration Des Sédiments En Suspension Dans Le Bassin Versant de Rybárik (Slovaquie). Hydrol. Sci. J. 2008, 53, 224–235. [Google Scholar] [CrossRef]
- Eder, A.; Strauss, P.; Krueger, T.; Quinton, J.N. Comparative Calculation of Suspended Sediment Loads with Respect to Hysteresis Effects (in the Petzenkirchen Catchment, Austria). J. Hydrol. 2010, 389, 168–176. [Google Scholar] [CrossRef]
- Sherriff, S.C.; Rowan, J.S.; Melland, A.R.; Jordan, P.; Fenton, O.; Huallacháin, D.O. Investigating Suspended Sediment Dynamics in Contrasting Agricultural Catchments Using Ex Situ Turbidity-Based Suspended Sediment Monitoring. Hydrol. Earth Syst. Sci. 2015, 19, 3349–3363. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Blanco, M.L.; Taboada-Castro, M.M.; Taboada-Castro, M.T. An Overview of Patterns and Dynamics of Suspended Sediment Transport in an Agroforest Headwater System in Humid Climate: Results from a Long-Term Monitoring. Sci. Total Environ. 2019, 648, 33–43. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Walsh, R.P.D.; Kalantari, Z.; Ferreira, A.J.D. Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban Catchment. Water 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Vercruysse, K.; Grabowski, R.C. Temporal Variation in Suspended Sediment Transport: Linking Sediment Sources and Hydro-Meteorological Drivers. Earth Surf. Process. Landf. 2019, 44, 2587–2599. [Google Scholar] [CrossRef]
- Wang, B.; Wang, C.; Jia, B.; Fu, X. Spatial Variation of Event-Based Suspended Sediment Dynamics in the Middle Yellow River Basin, China. Geomorphology 2022, 401, 108115. [Google Scholar] [CrossRef]
- Alpaos, A.D.; Tognin, D.; Tommasini, L.; Alpaos, L.D.; Rinaldo, A.; Carniello, L.; Alpaos, A.D.; Tognin, D.; Tommasini, L.; Alpaos, L.D.; et al. Statistical Characterization of Erosion and Sediment Transport Mechanics in Shallow Tidal Environments. Part 1: Erosion Dynamics. Authorea 2023. preprint. [Google Scholar]
- Lóczy, D. The Drava River; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-319-92815-9. [Google Scholar]
- Novák, T.J.; Lóczy, D. (Eds.) The Drava River: Environmental Problems and Solutions. In Hungarian Geographical Bulletin; Springer: Cham, Switzerland, 2019; pp. 99–101. ISBN 9783319928159. [Google Scholar]
- Ducman, V.; Bizjak, K.F.; Likar, B.; Kolar, M.; Robba, A.; Imperl, J.; Božič, M.; Gregorc, B. Evaluation of Sediments from the River Drava and Their Potential for Further Use in the Building Sector. Materials 2022, 15, 4303. [Google Scholar] [CrossRef]
- Mikoš, M. Rečni Sedimenti in Mineralni Agregati v Gradbeništvu. Gradb. Vestn. 2017, 64, 28. [Google Scholar]
- Horvat, U.; Konečnik Kotnik, E. Geografije Podravja; Univerza v Mariboru, Filozofska Fakulteta: Maribor, Slovenia, 2017; ISBN 9789612860745. [Google Scholar]
- Vas, L.; Tamás, E.A. Surrogate Method for Suspended Sediment Concentration Monitoring on the Alluvial Reach of the River Danube. Appl. Sci. 2023, 13, 5826. [Google Scholar] [CrossRef]
- Simpson, M.R. Discharge Measurements Using a Broad-Band Acoustic Doppler Current Profiler; United States Geological Survey Open-File Report 01-1; U.S. Geological Survey: Sacramento, CA, USA, 2001; 134p. [Google Scholar]
- Dipas, P.; Kuhnle, R.; Graj, J.; Glysson, D.; Edwards, T. Sediment Transport Measurements. USGS 1999, 305–352. [Google Scholar]
- Trček, R. Meritve Pretoka z Akustičnim Dopplerjevim Merilnikom (ADMP). MVD 2004, 211–217. [Google Scholar]
- Trček, R. Uporaba Horizontalnega Merilnika Hitrosti (H-ADCP) Za Določitev Pretoka Rek. Mišičev Vodarski Dan 2005, 1–8. [Google Scholar]
- Kim, Y.H.; Gutierrez, B.; Nelson, T.; Dumars, A.; Maza, M.; Perales, H.; Voulgaris, G. Using the Acoustic Doppler Current Profiler (ADCP) to Estimate Suspended Sediment Concentration; University of South Carolina: Columbia, SC, USA, 2004. [Google Scholar]
- Dinehart, R.L.; Burau, J.R. Repeated Surveys by Acoustic Doppler Current Profiler for Flow and Sediment Dynamics in a Tidal River. J. Hydrol. 2005, 314, 1–21. [Google Scholar] [CrossRef]
- Aardoom, J.H. Quantification of Sediment Concentrations and Fluxes from ADCP Measurements. IXemes Journées Natl. Génie Civ. Génie Côtier 2006, 501–510. [Google Scholar] [CrossRef]
- Kramer Stajnko, J.; Jecl, R.; Nekrep Perc, M. Measuremet of Suspended Sediment Concentration in the Drava River during High-Water Event. In Nanos u Vodnim Sustavima; Oskoruš, D., Rubinić, J., Eds.; Hrvatsko Hidrološko Društvo: Zagreb, Croatia, 2020. [Google Scholar]
- Lalk, P.; Haimann, M.; Habersack, H. Sediment Monitoring: Application of a New Monitoring Strategy and Analysis Concept of Suspended Sediments in Austrian Rivers. In Sediment Matters; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Gray, J.R.; Gartner, J.W. Surrogate Technologies for Continuous Suspended-Sediment Monitoring in the United States; Tsinghua University Press: Beijing, China, 2004; pp. 2–515. [Google Scholar]
- Gray, J.R.; Gartner, J.W. Technological Advances in Suspended-Sediment Surrogate Monitoring. Water Resour. Res. 2009, 45, W00D29. [Google Scholar] [CrossRef] [Green Version]
- Landers, M.N. Review of Methods To Estimate Fluvial Suspended Sediment Characteristics From Acoustic Surrogate Metrics. In Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, USA, 27 June–1 July 2010; pp. 1–2. [Google Scholar]
- Habersack, H.; Hauer, C. Sedimentforschung Und -Management. Osterr. Wasser Abfallwirtsch. 2019, 71, 108–110. [Google Scholar] [CrossRef] [Green Version]
- SIST EN 872; Water Quality—Determination of Suspended Solids—Method by Filtration through Glass Fibre Filters. SIST: Ljubljana, Slovenia, 2005.
- Russell, M.A.; Walling, D.E.; Hodgkinson, R.A. Suspended Sediment Sources in Two Small Lowland Agricultural Catchments in the UK. J. Hydrol. 2001, 252, 1–24. [Google Scholar] [CrossRef]
- Nones, M. Dealing with Sediment Transport in Flood Risk Management. Acta Geophys. 2019, 67, 677–685. [Google Scholar] [CrossRef] [Green Version]
- Øtrem, G.; Haakensen, N.; Olsen, H.C. Sediment Transport, Delta Growth and Sedimentation in Lake Nigardsvatn, Norway. Geogr. Ann. Ser. A Phys. Geogr. 2005, 87, 243–258. [Google Scholar] [CrossRef]
- Hupp, C.R.; Kroes, D.E.; Noe, G.B.; Schenk, E.R.; Day, R.H. Sediment Trapping and Carbon Sequestration in Floodplains of the Lower Atchafalaya Basin, LA: Allochthonous Versus Autochthonous Carbon Sources. J. Geophys. Res. Biogeosci. 2019, 124, 663–677. [Google Scholar] [CrossRef]
- Ralston, D.K.; Yellen, B.; Woodruff, J.D. Watershed Suspended Sediment Supply and Potential Impacts of Dam Removals for an Estuary. Estuaries Coasts 2021, 44, 1195–1215. [Google Scholar] [CrossRef]
- Silt Curtains Assist in Contaminated Sediment Removal. World Dredg. Min. Constr. 1996, 32.
- Li, Y.H.; Yu, G.L. Experimental Study on the Obliquity Angle of Suspended-Flexible-Curtain for Sediment Deposition. Shanghai Jiaotong Daxue Xuebao/J. Shanghai Jiaotong Univ. 2009, 43, 169–172 + 177. [Google Scholar]
- Youn, S.; Jung, B.; Lee, S. Limited Installation Ranges of Silt Curtain in Ocean and River Hydrodynamic Environment. J. Coast. Res. 2021, 114, 106–110. [Google Scholar] [CrossRef]
Sample No. | Location | Depth (m) | Date | Flow Q (m3/s) | Suspended-Sediment Concentration c (g/m3) |
---|---|---|---|---|---|
DRAVA Šturm | |||||
1 | Profile 1 | 2 | 14 October 2009 | 441 | 12.0 |
2 | Profile 1 | 4 | 14 October 2009 | 441 | 12.0 |
3 | Profile 2 | 2 | 14 October 2009 | 441 | 14.0 |
4 | Profile 2 | 4 | 14 October 2009 | 441 | 12.0 |
5 | Profile 3 | 2 | 14 October 2009 | 441 | 11.0 |
6 | Profile 3 | 4 | 14 October 2009 | 441 | 14.0 |
7 | Profile 1 | 2 | 14 January 2010 | 314 | 4.5 |
8 | Profile 1 | 4 | 14 January 2010 | 314 | 3.0 |
9 | Profile 2 | 2 | 14 January 2010 | 314 | 4.0 |
10 | Profile 2 | 4 | 14 January 2010 | 314 | 4.0 |
11 | Profile 3 | 2 | 14 January 2010 | 314 | 4.0 |
12 | Profile 3 | 4 | 14 January 2010 | 314 | 5.0 |
13 | Profile 1 | 2 | 20 April 2010 | 239 | 4.0 |
14 | Profile 1 | 4 | 20 April 2010 | 239 | 3.0 |
15 | Profile 2 | 2 | 20 April 2010 | 239 | 4.0 |
16 | Profile 2 | 4 | 20 April 2010 | 239 | 4.0 |
17 | Profile 3 | 2 | 20 April 2010 | 239 | 3.0 |
18 | Profile3 | 4 | 20 April 2010 | 239 | 4.0 |
19 | Profile 1 | 0 | 17 June 2010 | 556 | 54.0 |
20 | Profile 1 | 1 | 17 June 2010 | 556 | 49.0 |
21 | Profile 2 | 0 | 17 June 2010 | 556 | 53.0 |
22 | Profile 2 | 1 | 17 June 2010 | 556 | 54.0 |
23 | Profile 3 | 0 | 17 June 2010 | 556 | 50.0 |
24 | Profile 3 | 1 | 17 June 2010 | 556 | 49.0 |
25 | Profile 1 | 2 | 16 September 2010 | 429 | 17.0 |
26 | Profile 1 | 4 | 16 September 2010 | 429 | 13.0 |
27 | Profile 2 | 2 | 16 September 2010 | 429 | 16.0 |
28 | Profile 2 | 4 | 16 September 2010 | 429 | 15.0 |
29 | Profile 3 | 2 | 16 September 2010 | 429 | 15.0 |
30 | Profile 3 | 4 | 16 September 2010 | 429 | 15.0 |
31 | Profile 1 | 0 | 31 January 2011 | 312 | 5.0 |
32 | Profile 1 | 1 | 31 January 2011 | 312 | 1.0 |
33 | Profile 2 | 0 | 31 January 2011 | 312 | 3.0 |
34 | Profile 2 | 1 | 31 January 2011 | 312 | 1.0 |
35 | Profile 3 | 0 | 31 January 2011 | 312 | 1.0 |
36 | Profile 3 | 1 | 31 January 2011 | 312 | 3.0 |
37 | Profile 1 | 0 | 22 March 2011 | 169 | 6.0 |
38 | Profile 1 | 1 | 22 March 2011 | 169 | 5.0 |
39 | Profile 2 | 0 | 22 March 2011 | 169 | 14.0 |
40 | Profile 2 | 1 | 22 March 2011 | 169 | 14.0 |
41 | Profile 3 | 0 | 22 March 2011 | 169 | 20.0 |
42 | Profile 3 | 1 | 22 March 2011 | 169 | 20.0 |
43 | Profile 1 | 0 | 15 May 2012 | 301 | 19.0 |
44 | Profile 1 | 2 | 15 May 2012 | 301 | 19.0 |
45 | Profile 2 | 0 | 15 May 2012 | 301 | 14.0 |
46 | Profile 2 | 2 | 15 May 2012 | 301 | 14.0 |
47 | Profile 3 | 0 | 15 May 2012 | 301 | 20.0 |
48 | Profile 3 | 2 | 15 May 2012 | 301 | 20.0 |
DRAVA—Ptuj | |||||
61 | left | 0 | 5 May 2011 | 391 | 8.0 |
62 | left | 2 | 5 May 2011 | 391 | 6.0 |
63 | middle | 0 | 5 May 2011 | 391 | 8.0 |
64 | middle | 2 | 5 May 2011 | 391 | 9.0 |
65 | right | 0 | 5 May 2011 | 391 | 7.0 |
66 | right | 2 | 5 May 2011 | 391 | 9.0 |
67 | left | 0 | 9 June 2011 | 536 | 67.0 |
68 | middle | 0 | 9 June 2011 | 536 | 53.0 |
69 | right | 0 | 9 June 2011 | 536 | 50.0 |
70 | left | 0 | 20 June 2011 | 631 | 185.0 |
71 | middle | 0 | 20 June 2011 | 631 | 234.0 |
72 | right | 0 | 20 June 2011 | 631 | 246.0 |
73 | left | 0 | 18 August 2011 | 345 | 15.0 |
74 | left | 2 | 18 August 2011 | 345 | 13.0 |
75 | middle | 0 | 18 August 2011 | 345 | 31.0 |
76 | middle | 2 | 18 August 2011 | 345 | 34.0 |
77 | right | 0 | 18 August 2011 | 345 | 40.0 |
78 | right | 2 | 18 August 2011 | 345 | 40.0 |
79 | left | 0 | 22 July 2011 | 988 | 97.0 |
80 | middle | 0 | 22 July 2011 | 988 | 110.0 |
81 | right | 0 | 22 July 2011 | 988 | 110.0 |
82 | left | 0 | 13 September 2012 | 796 | 95.0 |
83 | middle | 0 | 13 September 2012 | 796 | 95.0 |
84 | right | 0 | 13 September 2012 | 796 | 64.0 |
Sample | Depth [m] | Concentracion [mg/L] |
---|---|---|
V1-1 | 0.3 | 0.0090 |
V1-2 | 0.9 | 0.0066 |
V1-3 | 1.2 | 0.0116 |
V1-4 | 1.4 | 0.0098 |
V2-1 | 0.4 | 0.0052 |
V2-2 | 1.2 | 0.0038 |
V2-3 | 1.6 | 0.0038 |
V2-4 | 1.9 | 0.0030 |
V3-1 | 0.7 | 0.0022 |
V3-2 | 2.1 | 0.0014 |
V3-3 | 2.8 | 0.0020 |
V3-4 | 3.3 | 0.0048 |
V4-1 | 0.7 | 0.0020 |
V4-2 | 2.1 | 0.0028 |
V4-3 | 2.8 | 0.0034 |
V4-4 | 3.3 | 0.0026 |
V5-1 | 0.4 | 0.0104 |
V5-2 | 1.2 | 0.0060 |
V5-3 | 1.6 | 0.0066 |
V5-4 | 1.9 | 0.0026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kramer Stajnko, J.; Jecl, R.; Nekrep Perc, M. Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long. Appl. Sci. 2023, 13, 9036. https://doi.org/10.3390/app13159036
Kramer Stajnko J, Jecl R, Nekrep Perc M. Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long. Applied Sciences. 2023; 13(15):9036. https://doi.org/10.3390/app13159036
Chicago/Turabian StyleKramer Stajnko, Janja, Renata Jecl, and Matjaž Nekrep Perc. 2023. "Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long" Applied Sciences 13, no. 15: 9036. https://doi.org/10.3390/app13159036
APA StyleKramer Stajnko, J., Jecl, R., & Nekrep Perc, M. (2023). Advances in Monitoring and Understanding the Dynamics of Suspended-Sediment Transport in the River Drava, Slovenia: An Analysis More than a Decade-Long. Applied Sciences, 13(15), 9036. https://doi.org/10.3390/app13159036