A Study Utilizing Numerical Simulation and Experimental Analysis to Predict and Optimize Flange-Forming Force in Open-Die Forging of C45 Billet Tubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. FE Simulation Model and Testing of Open-Die Forging Process
3. Results and Discussion
3.1. Evaluation of the Accuracy of Stress–Strain Models
3.2. Effect of Varying Upsetting Ratios and Punch’s Pitch Angle on Flange-Forming Force
3.3. Development of a Mathematical Model for Flange-Forming Force
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mannesmann Demag Hüttentechnik. MD-Dataforge—The Program Control System for MD-Open Die Forge Plants; Mannesmann Demag Hüttentechnik: Mönchengladbach, Germany, 1990. [Google Scholar]
- Politis, N.J.; Politis, D.J.; Davies, C.M.; Lin, J.; Dean, T.A. An experimental and numerical investigation into forming force reduction in precision gear forging. Key Eng. Mater. 2014, 622–623, 165–173. [Google Scholar] [CrossRef]
- Cai, J.; Dean, T.A.; Hu, Z.M. Alternative die designs in net-shape forging of gears. J. Mater. Process. Technol. 2004, 150, 48–55. [Google Scholar] [CrossRef]
- Tüzün, A. Analysis of Tube Upsetting; CWL Publ. Enterp. Inc.: Madison, WI, USA, 2004; Volume 2004, p. 352. [Google Scholar]
- Reddy, P.; Reddy, G.; Prasad, P. A Review on Finite Element Simulations in Metal Forming. Int. J. Mod. Eng. Res. 2012, 2, 2326–2330. [Google Scholar]
- Altan, T.; Ngaile, G.; Shen, G. Cold and Hot Forging: Fundamentals and Applications; AMS International: Dubai, United Arab Emirates, 2005; Volume 1, p. 341. [Google Scholar]
- Totry, E.; Molina-Aldareguía, J.M.; González, C.; Llorca, J. Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites. Polym. Test. 2022, 70, 105042. [Google Scholar] [CrossRef]
- Du, C.; Shu, D.; Du, Z.; Gao, G.; Wang, M.; Zhu, Z.; Xu, L. Effect of L/D on penetration performance of tungsten fibre/Zr-based bulk metallic glass matrix composite rod. Int. J. Refract. Met. Hard Mater. 2019, 85, 105042. [Google Scholar] [CrossRef]
- Chen, F.; Ou, H.; Gatea, S.; Long, H. Hot tensile fracture characteristics and constitutive modelling of polyether-ether-ketone (PEEK). Polym. Test. 2017, 63, 168–179. [Google Scholar] [CrossRef]
- Mac, T.-B.; Luyen, T.-T.; Nguyen, D.-T. A Study for Improved Prediction of the Cutting Force and Chip Shrinkage Coefficient during the SKD11 Alloy Steel Milling. Machines 2022, 10, 229. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Zhao, Y.; Cheng, Y.; Xiaojun, D.; Ma, S. Experimental study on dynamic recrystallization of titanium alloy Ti6Al4V at different strain rates. Mater. Res. Express 2022, 9, 046526. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.L.; Zhang, S.Y.; Lin, Y.C.; Fu, M.Y. Springback prediction model of Ti-6Al-4V tube warm bending based on modified JC model considering variable temperature field. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1270, 012048. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Z.; Liu, H.; Li, N. Error analysis of stress-strain characterisation on solid-state polymers under simple shear deformation using V-Notched Rail shear test. Engrxiv 2022, 1–27. [Google Scholar] [CrossRef]
- Shokry, A.; Gowid, S.; Mulki, H.; Kharmanda, G. On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates Using Johnson–Cook and Modified Johnson–Cook-Based Models: A Review. Materials 2023, 16, 1574. [Google Scholar] [CrossRef] [PubMed]
- Wos, P.; Dindorf, R. Energy-Saving Hot Open Die Forging Process of Heavy Steel Forgings on an Industrial Hydraulic Forging Press. Energies 2020, 13, 1620. [Google Scholar] [CrossRef] [Green Version]
- Reinisch, N.; Rudolph, F.; Günther, S.; Bailly, D.; Hirt, G. Successful pass schedule design in open-die forging using double deep Q-learning. Processes 2021, 9, 1084. [Google Scholar] [CrossRef]
- Winiarski, G. Theoretical and Experimental Study on the Effect of Selected Parameters in a New Method of Extrusion with a Movable Sleeve. Materials 2022, 15, 4585. [Google Scholar] [CrossRef]
- Miłek, T. Effect of Workpiece Slenderness on the Numerical Flow Lines Distribution in the Cross-Section of a Circular-Symmetric Part Hot Die Forged with a Hammer. Adv. Sci. Technol. Res. J. 2022, 16, 108–117. [Google Scholar] [CrossRef]
- Behrens, B.A.; Uhe, J.; Ross, I.; Peddinghaus, J.; Ursinus, J.; Matthias, T.; Bährisch, S. Tailored Forming of hybrid bulk metal components. Int. J. Mater. Form. 2022, 15, 42. [Google Scholar] [CrossRef]
- Khan, W.A.; Hayat, Q.; Ahmed, F.; Ali, M.; Zain-ul-Abdein, M. Comparative Assessment of Mechanical Properties and Fatigue Life of Conventional and Multistep Rolled Forged Connecting Rods of High Strength AISI/SAE 4140 Steel. Metals 2023, 13, 1035. [Google Scholar] [CrossRef]
- Alves, L.M.; Afonso, R.M.; Silva, C.M.A.; Martins, P.A.F. Boss forming of annular flanges in thin-walled tubes. J. Mater. Process. Technol. 2017, 250, 182–189. [Google Scholar] [CrossRef]
- Alves, L.M.; Afonso, R.M.; Silva, C.M.A.; Martins, P.A.F. Joining tubes to sheets by boss forming and upsetting. J. Mater. Process. Technol. 2018, 252, 773–781. [Google Scholar] [CrossRef]
- DIN EN ISO 9445-1:2010-06; Continuously Cold-Rolled Stainless Steel-Tolerances on Dimensions and Form-Part 1: Narrow Strip and Cut Lengths (ISO 9445-1:2009). Beuth Verlag: Berlin, Germany, 2010.
- Wang, Z.J.; Cheng, L.D. Effect of material parameters on stress wave propagation during fast upsetting. Trans. Nonferrous Met. Soc. China 2008, 18, 1189–1195. [Google Scholar] [CrossRef]
- Corporation, B.S. Physical modeli g of the upsetting process in open-die p ress forging. J. Mech. Work. Technol. 1989, 19, 195–210. [Google Scholar]
- Essa, K.; Kacmarcik, I.; Hartley, P.; Plancak, M.; Vilotic, D. Upsetting of bi-metallic ring billets. J. Mater. Process. Technol. 2012, 212, 817–824. [Google Scholar] [CrossRef]
- Su, Y.L.; Yang, W.Z.; Wang, C.P. Upsetting process analysis and numerical simulation of metal pipe’s end. Appl. Mech. Mater. 2013, 364, 488–492. [Google Scholar] [CrossRef]
- Kajtoch, J. Strain in the Upsetting Process. Met. Foundry Eng. 2007, 33, 51. [Google Scholar] [CrossRef]
- Luyen, T.T.; Mac, T.B.; Nguyen, D.T. Simulation and experimental comparison study based on predicting forming limit curve of SUS304 sheet material. Mod. Phys. Lett. B 2023, 2340001. [Google Scholar] [CrossRef]
- Tang, H.; Hao, C.; Jiang, Y.; Du, L. Forming process and numerical simulation of making upset on oil drill pipe. Acta Metall. Sin. (Engl. Lett.) 2010, 23, 72–80. [Google Scholar]
- Bricout, J.P.; Oudin, J.; Liebaert, P.; Ravalard, Y. Hot-upsetting tests on steel cylinders after solidification. J. Mater. Process. Technol. 1992, 30, 315–328. [Google Scholar] [CrossRef]
- Yahaya, A.; Samion, S.; Abidin, U.; Kameil, M.; Hamid, A. Different Behaviors of Friction in Open and Closed Forging Test Utilizing Palm Oil-Based Lubricants. Lubricants 2023, 11, 114. [Google Scholar] [CrossRef]
- Mac, T.-B.; Luyen, T.-T.; Nguyen, D.-T. The Impact of High-Speed and Thermal-Assisted Machining on Tool Wear and Surface Roughness during Milling of SKD11 Steel. Metals 2023, 13, 971. [Google Scholar] [CrossRef]
- Bui, T.-A.; Pham, V.-H.; Nguyen, D.-T.; Bui, N.-T. Effectiveness of Lubricants and Fly Ash Additive on Surface Damage Resistance under ASTM Standard Operating Conditions. Coatings 2023, 13, 851. [Google Scholar] [CrossRef]
- Pop, M.F.; Neag, A.V.; Sas-Boca, I.M. Experimental and Numerical Study on the Influence of Lubrication Conditions on AA6068 Aluminum Alloy Cold Deformation Behavior. Materials 2023, 16, 2045. [Google Scholar] [CrossRef] [PubMed]
- Kotous, J.; Kubec, V.; Duchek, M.; Studecký, T. Optimization of workability technological testing for open-die Forg. Conf. Ser. Mater. Sci. Eng. 2020, 723, 012015. [Google Scholar] [CrossRef]
- Nagasekhar, A.V.; Kim, H.S. Analysis of T-shaped equal channel angular pressing using the finite element method. Met. Mater. Int. 2008, 14, 565–568. [Google Scholar] [CrossRef]
- Boroomand, B.; Parvizian, J.; Pishevar, A.R. Contact modeling in forging simulation. J. Mater. Process. Technol. 2002, 125–126, 583–587. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Wang, F.; Zang, X.; Li, X.; Xiao, H.; Du, F.; Zhang, F.; Jiang, Z. Analysis of laminated crack defect in the upsetting process of heavy disk-shaped forgings. Eng. Fail. Anal. 2016, 59, 197–210. [Google Scholar] [CrossRef] [Green Version]
- Search, H.; Journals, C.; Contact, A.; Iopscience, M.; Simul, M.; Address, I.P. Simulation of three-dimensional bulk forming processes by finite element flow formulation. Inst. Phys. Publ. Model. Simul. Mater. Sci. Eng. 2003, 803. [Google Scholar] [CrossRef]
- Schiemann, T.; Liewald, M.; Beiermeister, C.; Till, M. Influence of process chain on fold formation during flange upsetting of tubular cold forged parts. Procedia Eng. 2014, 81, 352–357. [Google Scholar] [CrossRef]
- Pham, Q.T.; Kim, J.; Luyen, T.T.; Nguyen, D.T.; Kim, Y.S. Application of a Graphical Method on Estimating Forming Limit Curve of Automotive Sheet Metals. Int. J. Automot. Technol. 2019, 20 (Suppl. S1), 3–8. [Google Scholar] [CrossRef]
- Schiemann, T.; Liewald, M. Mechanisms of fold formation during flange upsetting of tubular parts Mechanisms of Fold Formation during Flange Upsetting of Tubular Parts. AIP Conf. Proc. 2013, 1532, 284–290. [Google Scholar] [CrossRef]
- Luyen, T.; Tong, V.; Nguyen, D. A simulation and experimental study on the deep drawing process of SPCC sheet using the graphical method. Alex. Eng. J. 2021, 61, 2472–2483. [Google Scholar] [CrossRef]
- The-Thanh, L.; Tien-Long, B.; The-Van, T.; Duc-Toan, N. A study on a deep-drawing process with two shaping states for a fuel-filter cup using combined simulation and experiment. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, M.E.; Galetta, F.R.; Tricarico, L. Study of Tailored Hot Stamping Process on Advanced High-Strength Steels. J. Manuf. Mater. Process. 2022, 6, 11. [Google Scholar] [CrossRef]
- Yi, L.; Yu, G.; Tang, Z.; Li, X.; Gu, Z. Investigation of the Hot Stamping-in-Die Quenching Composite Forming Process of 5083 Aluminum Alloy Skin. Materials 2023, 16, 2742. [Google Scholar] [CrossRef]
- Dong, T.; Toan, N.; Dung, N. Influence of heat treatment process on the hardness and material structure of SKD61 tool steel. Mod. Phys. Lett. B 2023, 37, 2340014. [Google Scholar] [CrossRef]
- Gebremeskel, S.; Uppala, R. Effect of Hot Forging on Chemical Composition and Metallographic Structure of Steel Alloys. Glob. J. Res. Eng. Mech. Mech. Eng. 2012, 12, 33–42. [Google Scholar]
- Mac, T.-B.; Luyen, T.-T.; Nguyen, D.-T. Assessment of the Effect of Thermal-Assisted Machining on the Machinability of SKD11 Alloy Steel. Metals 2023, 13, 699. [Google Scholar] [CrossRef]
- Durukan, İ. Effects of induction heating parameters on forging billet temperature. Master Sci. Mech. Eng. Dep. Middle East Tech. Univ. 2007, 46, 171–174. [Google Scholar] [CrossRef]
- Galkin, V.; Kurkin, A.; Gavrilov, G.; Kulikov, I.; Bazhenov, E. Investigation of the Technological Possibility of Manufacturing Volumetric Shaped Ductile Cast Iron Products in Open Dies. Materials 2022, 16, 274. [Google Scholar] [CrossRef]
- Mesbah, A. Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams. Struct. Eng. Mech. 2023, 86, 291–309. [Google Scholar] [CrossRef]
- Katiyar, V.; Gupta, A.; Tounsi, A. Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D-FGPs) with partial supports by using FEM. Steel Compos. Struct. 2022, 45, 621–640. [Google Scholar] [CrossRef]
- Luyen, T.T.; Nguyen, D.T. Improved uniformity in cylindrical cup wall thickness at elevated temperatures using deep drawing process for SPCC sheet steel. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 348. [Google Scholar] [CrossRef]
- Rajesh, K.V.D.; Mishra, H.; Buddi, T. Finite Element Analysis of Chromium and Molybdenum Alloyed Steel Billets Forged on Multi Step Process Using Simufact Forming. Adv. Mater. Process. Technol. 2021, 8, 1260–1274. [Google Scholar] [CrossRef]
- Luyen, T.T.; Mac, T.B.; Banh, T.L.; Nguyem, D.T. Investigating the impact of yield criteria and process parameters on fracture height of cylindrical cups in the deep drawing process of SPCC sheet steel. Int. J. Adv. Manuf. Technol. 2023. [Google Scholar] [CrossRef]
- Rajesh, K.V.D.; Buddi, T.; Mishra, H. Finite element simulation of Ti-6Al-4V billet on open die forging process under different temperatures using deform-3d. Adv. Mater. Process. Technol. 2021, 8, 1963–1972. [Google Scholar] [CrossRef]
- Banaszek, G.; Bajor, T.; Kawałek, A.; Knapiński, M. Modeling of the Closure of Metallurgical Defects in the Magnesium Alloy Die Forging Process. Materials 2022, 15, 7465. [Google Scholar] [CrossRef] [PubMed]
- TCVN 1766:1975; High Quality Structural Carbon Steels—Marks and Specifications. TCVN: Hanoi, Vietnam, 1975.
- Laber, K.; Dyja, H.; Kawałek, A.; Sawicki, S. Determination of characteristics of plasticity of selected medium and high carbon steel grades in hot torsion test. Metalurgija 2016, 55, 635–638. [Google Scholar]
- Taguchi, G.; Chowdhury, S.; Wu, Y.; Taguchi, S. Hiroshi Yano. In Taguchi’s Quality Engineering Handbook; ASI Consult. Group: Bingham Farms, MI, USA, 2005. [Google Scholar]
C (%) | Si (%) | Mn (%) | P (%) Max | S (%) Max | Cr (%) |
---|---|---|---|---|---|
0.42–0.50 | 0.15–0.35 | 0.50–0.80 | 0.025 | 0.025 | 0.20–0.40 |
Parameters | Value |
---|---|
Density (ρ, g/cm3) | 7.87 |
Hardness (HB) | 163 |
Ultimate tensile strength (N/mm2) | 565 |
Yield strength (N/mm2) | 310 |
Elastic modulus (E, GPa) | 200 |
Poisson coefficient | 0.29 |
Shear modulus (GPa) | 80 |
Values of parameters obtained through approximation of the Equation (1) | ||||||||
A | ||||||||
14,087.5 | −0.003 | 0.2814 | 0.0297 | −0.0177 | −0.0003 | −0.0415 | 0.0001 | −0.311 |
Strain Rate | Experiment | Simulation | Deviation |
---|---|---|---|
PE (ton) | (ton) | (%) | |
0.1 S−1 | 33.4 | 26.5 | 21.36 |
10 S−1 | 38.6 | 14.54 | |
Equation (1) | 34.8 | 4.19 |
Geometrical Parameters | Level | Flange-Forming Force |
---|---|---|
H0/D0 | 0.4; 0.6; 0.8; 1.0 | P (ton) |
S0/D0 | 0.2; 0.25; 0.3; 0.35 | |
α | 0°; 5°; 10°; 15° |
Case No. | H0/D0 | S0/D0 | α |
---|---|---|---|
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 1 | 4 | 4 |
5 | 2 | 1 | 2 |
6 | 2 | 2 | 3 |
7 | 2 | 3 | 4 |
8 | 2 | 4 | 1 |
9 | 3 | 1 | 3 |
10 | 3 | 2 | 4 |
11 | 3 | 3 | 1 |
12 | 3 | 4 | 2 |
13 | 4 | 1 | 4 |
14 | 4 | 2 | 1 |
15 | 4 | 3 | 2 |
16 | 4 | 4 | 3 |
Factor | Level 1 | Level 2 | Level 3 | Level 4 | |
---|---|---|---|---|---|
Value | H0/D0 | 0.4 | 0.6 | 0.8 | 1.0 |
S0/D0 | 0.2 | 0.25 | 0.3 | 0.35 | |
α | 0 | 5 | 10 | 15 |
Case No. | H0/D0 | S0/D0 | α (°) | P (Ton) | Mean Square Deviation | S/N | |
---|---|---|---|---|---|---|---|
1 | 0.4 | 0.2 | 0 | 18.1 | 327.61 | 29.839 | −25.154 |
2 | 0.4 | 0.25 | 5 | 21.3 | 453.69 | 5.119 | −26.568 |
3 | 0.4 | 0.3 | 10 | 34.1 | 1162.8 | 111.039 | −30.655 |
4 | 0.4 | 0.35 | 15 | 36.3 | 1317.7 | 162.244 | −31.198 |
5 | 0.6 | 0.2 | 5 | 15.7 | 246.49 | 61.819 | −23.918 |
6 | 0.6 | 0.25 | 0 | 20.4 | 416.16 | 10.001 | −26.193 |
7 | 0.6 | 0.3 | 15 | 33.3 | 1108.9 | 94.819 | −30.449 |
8 | 0.6 | 0.35 | 10 | 34.6 | 1197.2 | 121.826 | −30.782 |
9 | 0.8 | 0.2 | 10 | 13.7 | 187.69 | 97.269 | −22.734 |
10 | 0.8 | 0.25 | 15 | 23.2 | 533.61 | 0.214 | −27.272 |
11 | 0.8 | 0.3 | 0 | 23.7 | 561.69 | 0.019 | −27.495 |
12 | 0.8 | 0.35 | 5 | 23.1 | 533.61 | 0.214 | −27.272 |
13 | 1.0 | 0.2 | 15 | 15.1 | 228.01 | 71.614 | −23.580 |
14 | 1.0 | 0.25 | 10 | 18.4 | 338.56 | 26.651 | −25.296 |
15 | 1.0 | 0.3 | 5 | 21.7 | 470.89 | 3.469 | −26.729 |
16 | 1.0 | 0.35 | 0 | 24.4 | 595.36 | 0.701 | −27.748 |
Factor | The S/N Ratio of Each Level | Sum of Squares S/N | Mean Squared SN | Contribution (%) | |||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
H0/D0 | −28.394 | −27.836 | −26.193 | −25.838 * | 166.228 | 55.409 | 21.1 |
S/D | −23.847 * | −26.332 | −28.832 | −29.250 | 512.787 | 170.929 | 65.0 |
α | −26.648 | −26.122 * | −27.367 | −28.125 | 100.007 | 36.669 | 13.9 |
Total | 263.007 |
Factor | Degrees of Freedom | Mean Squared SN | Residual Variance | R2 | ||||
---|---|---|---|---|---|---|---|---|
H0/D0 | 3 | 166.228 | 55.409 | 1.44 | 0.48 | 0.98 | 1.6741 | 8.7 |
S0/D0 | 3 | 512.787 | 170.929 | |||||
α | 3 | 100.007 | 36.669 | |||||
Total | 9 |
Case No. | H0/D0 | S0/D0 | α | PM (ton) | PS (ton) | PE (ton) | (%) | (%) |
---|---|---|---|---|---|---|---|---|
17 | 1.0 | 0.25 | 10 | 17.62 | 17.4 | 16.9 | 4.26 | 2.96 |
18 | 0.6 | 0.2 | 0 | 14.58 | 14.7 | 14.2 | 2.68 | 3.52 |
19 | 0.4 | 0.3 | 20 | 34.12 | 35.8 | 35.3 | 3.34 | 1.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phan, T.-H.-L.; Luyen, T.-T.; Nguyen, D.-T. A Study Utilizing Numerical Simulation and Experimental Analysis to Predict and Optimize Flange-Forming Force in Open-Die Forging of C45 Billet Tubes. Appl. Sci. 2023, 13, 9063. https://doi.org/10.3390/app13169063
Phan T-H-L, Luyen T-T, Nguyen D-T. A Study Utilizing Numerical Simulation and Experimental Analysis to Predict and Optimize Flange-Forming Force in Open-Die Forging of C45 Billet Tubes. Applied Sciences. 2023; 13(16):9063. https://doi.org/10.3390/app13169063
Chicago/Turabian StylePhan, Thi-Ha-Linh, The-Thanh Luyen, and Duc-Toan Nguyen. 2023. "A Study Utilizing Numerical Simulation and Experimental Analysis to Predict and Optimize Flange-Forming Force in Open-Die Forging of C45 Billet Tubes" Applied Sciences 13, no. 16: 9063. https://doi.org/10.3390/app13169063
APA StylePhan, T. -H. -L., Luyen, T. -T., & Nguyen, D. -T. (2023). A Study Utilizing Numerical Simulation and Experimental Analysis to Predict and Optimize Flange-Forming Force in Open-Die Forging of C45 Billet Tubes. Applied Sciences, 13(16), 9063. https://doi.org/10.3390/app13169063