Measurement Uncertainty Analysis of the Stitching Linear-Scan Method for the Measurable Dimension of Small Cylinders
Abstract
:1. Introduction
2. Principles and Experiment
3. Measurement Uncertainty Analysis of the Linear Scan Method
3.1. Mathematical Modeling
- (1)
- Uncertainty of output zi in the Z-axis direction.u(ecalibration_Z): Uncertainty of stylus calibration in the Z-axis direction.u(eresolution): Uncertainty due to stylus resolution.u(erepeat): Uncertainty of repeatability.
- (2)
- Uncertainty of output xi in the X-axis directionu(ecalibration_X): Uncertainty of stylus calibration in the X-axis direction.u(ealignment_Z): Uncertainty due to position error around the Z-axis of the workpiece.u(ealignment_X): Uncertainty due to position error around the X-axis of the workpiece.
3.2. Measurement Uncertainty Evaluation
- Uncertainty coefficient of the Z-axis coordinate zi.
- (1)
- Uncertainty of stylus calibration in Z-axis direction u(ecalibration_Z).
- (2)
- Uncertainty due to stylus resolution u(eresolution).
- (3)
- Uncertainty of repeated measurements u(erepeat).
- 2.
- Uncertainty coefficient of the X-axis coordinate xi.
- (1)
- Uncertainty of stylus calibration in the X-axis direction u(ecalibration_X).
- (2)
- Uncertainty due to position error around the Z-axis of the workpiece u(ealignment_Z).
- (3)
- Uncertainty due to position error around the X-axis of the workpiece u(ealignment_Z).
3.3. Variation of Uncertainty Due to Change in Workpiece Diameter
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qiu, Z.; Xue, J. Review of Performance Testing of High Precision Reducers for Industrial Robots. Measurement 2021, 183, 109794. [Google Scholar] [CrossRef]
- Yu, Z.; Hao, Z. Calibration of the Angle Measurement Error Caused by the Industrial Reducer Performance Test Instrument Torsional Deformation. Sci. Rep. 2022, 12, 21742. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.X.; Chen, B.K.; Li, C.Y. Dynamic Modelling and Contact Analysis of Bearing-Cycloid-Pinwheel Transmission Mechanisms Used in Joint Rotate Vector Reducers. Mech. Mach. Theory 2019, 137, 432–458. [Google Scholar] [CrossRef]
- Yue, H.; Wu, X.; Shi, Z.; Zhang, Y.; Ye, Y.; Zhang, L.; Fu, Y. A Comprehensive Cycloid Pin-Wheel Precision Reducer Test Platform Integrated with A New Dynamic Measurement Method of Lost Motion. Metrol. Meas. Syst. 2022, 29, 207–229. [Google Scholar] [CrossRef]
- Xie, Y.H.; Xu, L.X.; Deng, Y.Q. A Dynamic Approach for Evaluating the Moment Rigidity and Rotation Precision of a Bearing-Planetary Frame Rotor System Used in RV Reducer. Mech. Mach. Theory 2022, 173, 104851. [Google Scholar] [CrossRef]
- Gao, W. Precision Nanometrology; Springer Series in Advanced Manufacturing; Springer London: London, UK, 2010; ISBN 978-1-84996-253-7. [Google Scholar]
- Gao, W. (Ed.) Metrology; Precision Manufacturing; Springer: Singapore, 2019; ISBN 978-981-10-4937-8. [Google Scholar]
- Gao, W. Surface Metrology for Micro-and Nanofabrication; Elsevier: Oxford, UK, 2020; ISBN 9780128178508. [Google Scholar]
- Gao, W. Precision Nanometrology and Its Applications to Precision Nanosystems. Int. J. Precis. Eng. Manuf. 2005, 6, 14–20. [Google Scholar]
- Wei, G.; Yuki, S.; Hane, K.; Soyama, H.; Adachi, K. Measurement and Instrumentation; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Gao, W.; Shimizu, Y. Optical Metrology for Precision Engineering; De Gruyter: Berlin, Germany, 2021; ISBN 9783110542363. [Google Scholar]
- ISO/TC 213; ISO 12181-1; 2003 Geometrical Product Specifications (GPS)-Roundness-Part 1: Vocabulary and Parameters of Roundness. American National Standards Institute: Washington, DC, USA, 2007.
- Taylor Hobson Ltd. A Guide to the Measurement of Roundness. Introduction to Roundness. Available online: http://www.tarkkuustuonti.fi/Kampanjat/Brochure_Roundness_Booklet.pdf (accessed on 6 July 2023).
- Taylor Hobson Ltd. Roundness Measurement Equipment|Form Measurement|Cylindricity Measuring Instrument|Roundness Tester. Available online: https://www.taylor-hobson.com/products/roundness-form (accessed on 6 July 2023).
- Sui, W.; Zhang, D. Four Methods for Roundness Evaluation. Phys. Procedia 2012, 24, 2159–2164. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Wang, Y.; Wang, X.; Zhou, Q.; Ni, K.; Li, X. Three-Probe Error Separation with Chromatic Confocal Sensors for Roundness Measurement. Nanomanufacturing and Metrology. Nanomanufacturing Metrol. 2021, 4, 247–255. [Google Scholar] [CrossRef]
- Gao, W.; Kiyono, S. On-Machine Roundness Measurement of Cylindrical Workpieces by the Combined Three-Point Method. Measurement 1997, 21, 147–156. [Google Scholar] [CrossRef]
- Cai, Y.; Xie, B.; Ling, S.; Fan, K.-C. On-Line Measurement Method for Diameter and Roundness Error of Balls. Nanomanufacturing Metrol. 2020, 3, 218–227. [Google Scholar] [CrossRef]
- Gao, W.; Haitjema, H.; Fang, F.Z.; Leach, R.K.; Cheung, C.F.; Savio, E.; Linares, J.M. On-Machine and in-Process Surface Metrology for Precision Manufacturing. CIRP Ann. 2019, 68, 843–866. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.L.; Machida, Y.; Shimizu, Y.; Matsukuma, H.; Gao, W. A Stitching Linear-Scan Method for Roundness Measurement of Small Cylinders. CIRP Ann. 2018, 67, 535–538. [Google Scholar] [CrossRef]
- Li, Q.; Shimizu, Y.; Saito, T.; Matsukuma, H.; Gao, W. Measurement Uncertainty Analysis of a Stitching Linear-Scan Method for the Evaluation of Roundness of Small Cylinders. Appl. Sci. 2020, 10, 4750. [Google Scholar] [CrossRef]
- Li, Q.; Shimizu, Y.; Saito, T.; Matsukuma, H.; Cai, Y.; Gao, W. Improvement of a Stitching Operation in the Stitching Linear-Scan Method for Measurement of Cylinders in a Small Dimension. Appl. Sci. 2021, 11, 4705. [Google Scholar] [CrossRef]
- JCGM 100:2008; GUM 1995 with Minor Corrections-Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM: Sèvres, France, 2008; Volume 50.
- JCGM 200:2012; International Vocabulary of Metrology–Basic and General Concepts and Associated Terms (VIM)-2008 Version with Minor Corrections. BIPM: Sèvres, France, 2012; Volume 3.
- Wen, X.-L.; Zhao, Y.-B.; Wang, D.-X.; Pan, J. Adaptive Monte Carlo and GUM Methods for the Evaluation of Measurement Uncertainty of Cylindricity Error. Precis. Eng. 2013, 37, 856–864. [Google Scholar] [CrossRef]
- Jermak, C.J.; Jakubowicz, M.; Derezynski, J.; Rucki, M. Uncertainty of the Air Gauge Test Rig. Int. J. Precis. Eng. Manuf. 2017, 18, 479–485. [Google Scholar] [CrossRef]
- Gao, W.; Kim, S.W.; Bosse, H.; Haitjema, H.; Chen, Y.L.; Lu, X.D.; Knapp, W.; Weckenmann, A.; Estler, W.T.; Kunzmann, H. Measurement Technologies for Precision Positioning. CIRP Ann. Manuf. Technol. 2015, 64, 773–796. [Google Scholar] [CrossRef]
- Skrzek, T.; Rucki, M.; Górski, K.; Matijošius, J.; Barta, D.; Caban, J.; Zarajczyk, J. Repeatability of High-Pressure Measurement in a Diesel Engine Test Bed. Sensors 2020, 20, 3478. [Google Scholar] [CrossRef]
- Jermak, C.J.; Dereżyński, J.; Rucki, M. Measurement System for Assesment of Motor Cylinder Tolerances and Roundness. Metrol. Meas. Syst. 2023, 25, 103–114. [Google Scholar] [CrossRef]
- Gurauskis, D.; Przystupa, K.; Kilikevičius, A.; Skowron, M.; Matijošius, J.; Caban, J.; Kilikevičienė, K. Development and Experimental Research of Different Mechanical Designs of an Optical Linear Encoder’s Reading Head. Sensors 2022, 22, 2977. [Google Scholar] [CrossRef]
- Kowalik, M.; Rucki, M.; Paszta, P.; Gołębski, R. Plastic Deformations of Measured Object Surface in Contact with Undeformable Surface of Measuring Tool. Meas. Sci. Rev. 2016, 16, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Tounsi, A.; Tahir, S.; Al-Osta, M.; Do-Van, T.; Bourada, F.; Bousahla, A.A.; Tounsi, A. An Integral Quasi-3D Computational Model for the Hygro-Thermal Wave Propagation of Imperfect FGM Sandwich Plates. Comput. Concr. 2023, 32, 61–74. [Google Scholar]
- Tounsi, A.; Mostefa, A.H.; Attia, A.; Bousahla, A.A.; Bourada, F.; Tounsi, A.; Al-Osta, M.A. Free Vibration Investigation of Functionally Graded Plates with Temperature-Dependent Properties Resting on a Viscoelastic Foundation. Struct. Eng. Mech. 2023, 86, 1–16. [Google Scholar]
Source of Uncertainty | Symbol | Type | Coverage Factor | Standard Uncertainty | Sensitivity Coefficient | |ci| × u(xi) nm |
---|---|---|---|---|---|---|
Calibration of probe | u(ecalibration_Z) | A | ― | 33.7 | 1 | 33.7 |
Resolution | u(eresolution) | B | 0.92 | 1 | 0.92 | |
Repeatability | u(erepeat) | A | ― | 18.95 | 1 | 18.95 |
Combined standard uncertainty | u(zi) | ― | 38.45 |
Source of Uncertainty | Symbol | Type | Coverage Factor | Standard Uncertainty | Sensitivity Coefficient | |ci| × u(xi) nm |
---|---|---|---|---|---|---|
Calibration of probe | u(ecalibration_X) | A | ― | 33.7 | 1 | 33.7 |
Attitude error around Z-axis | u(ealignment_Z) | B | 25.68 | 1 | 25.68 | |
Attitude error around X-axis | u(ealignment_X) | B | 0.26 | 1 | 0.26 | |
Combined standard uncertainty | u(xi) | ― | 42.37 |
Source of Uncertainty | Symbol | Type | Coverage Factor | Standard Uncertainty | Sensitivity Coefficient | |ci| × u(xi) nm |
---|---|---|---|---|---|---|
Output in Z-axis direction | u(zi) | ― | ― | 38.45 | 1 | 38.45 |
Coordinate of X-axis | u(xi) | ― | ― | 42.37 | 1 | 42.37 |
Combined standard uncertainty | u(Ri) | ― | 40.28 | |||
Radius after stitching process | ― | 14.24 | ||||
Diameter | u(D) | ― | 28.48 | |||
Expanded uncertainty (k = 2) | U(D) | ― | 56.96 |
Attitude Error Angle θZ deg. | 0.1 | 0.3 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1 | 1.5 | 2 |
Work Diameter Upper Limit mm (U(D)) | - | 61.65 | 22.31 | 15.50 | 11.39 | 8.72 | 6.89 | 5.58 | 2.48 | 1.39 |
Work Diameter Upper Limit mm (U(Δzq)) | - | 23.34 | 8.44 | 5.86 | 4.31 | 3.30 | 2.60 | 2.11 | 0.93 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Zhang, L.; Wu, D.; Shen, B.; Li, Q. Measurement Uncertainty Analysis of the Stitching Linear-Scan Method for the Measurable Dimension of Small Cylinders. Appl. Sci. 2023, 13, 9091. https://doi.org/10.3390/app13169091
Zhao J, Zhang L, Wu D, Shen B, Li Q. Measurement Uncertainty Analysis of the Stitching Linear-Scan Method for the Measurable Dimension of Small Cylinders. Applied Sciences. 2023; 13(16):9091. https://doi.org/10.3390/app13169091
Chicago/Turabian StyleZhao, Jiali, Liang Zhang, Dan Wu, Bobo Shen, and Qiaolin Li. 2023. "Measurement Uncertainty Analysis of the Stitching Linear-Scan Method for the Measurable Dimension of Small Cylinders" Applied Sciences 13, no. 16: 9091. https://doi.org/10.3390/app13169091
APA StyleZhao, J., Zhang, L., Wu, D., Shen, B., & Li, Q. (2023). Measurement Uncertainty Analysis of the Stitching Linear-Scan Method for the Measurable Dimension of Small Cylinders. Applied Sciences, 13(16), 9091. https://doi.org/10.3390/app13169091