Analysis of the Effect of Temperature on the Sound Transmission Loss of a Curved Plate
Abstract
:1. Introduction
2. Theoretical Model
2.1. Thermal Stress Analysis
2.2. Vibration Theory of a Simply Supported Curved-Plate Structure in a Thermal Environment
2.3. Sound Transmission Loss
3. Model Validation
4. Numerical Results and Analysis
4.1. Effect of Temperature
4.2. Effect of Pitch and Azimuth Angles
4.3. Effect of the Radius of Curvature and Opening Angle
4.4. Effect of Loss Factor
5. Conclusions
- Temperature affects modal frequencies of different orders to different extents. For the curved plate, the minimum modal frequency is most affected by temperature, and the (1, 1)-order modal frequency is least affected by temperature. The modal frequency ratio varies approximately linearly with decreasing temperature.
- Temperature changes cause a change in the order of appearance of the mode shapes, and the greater the temperature change, the more the order of the mode shapes changes. The effect of temperature on STL is due to temperature changing the modal frequencies.
- The larger the radius, the more pronounced the effect of temperature on the STL. As the opening angle increases, the STL will experience an aggregation phenomenon at (1, 1)-order modal frequencies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.B.; Ren, C.Y.; Zhu, X. Research on Vibration and Sound Radiation from Submarine Functionally Graded Material Nonpressure Cylindrical Shell. Adv. Mater. Res. 2013, 690–693, 3046–3049. [Google Scholar] [CrossRef]
- Behrens, B.; Müller, M. Technologies for Thermal Protection Systems Applied on Re-usable Launcher. Acta Astronaut. 2004, 55, 529–536. [Google Scholar] [CrossRef]
- Sreelatha, P.R.; Mathai, A. Linear and Nonlinear Buckling Analysis of Stiffened Cylindrical Submarine Hull. Int. J. Eng. Sci. 2012, 4, 3003–3009. [Google Scholar]
- Timoshenko, S.P.; Gere, J.M.; Prager, W. Theory of Elastic Stability, 2nd ed.; Dover publications, Inc.: Mineola, NY, USA, 1962; Volume 29, p. 220. [Google Scholar]
- Qian, H.; Zhou, D.; Yin, J.; Qiu, Y. A Theoretical Investigation on the Thermal Response of Laminated Cylindrical Panel. Arch. Appl. Mech. 2020, 90, 475–493. [Google Scholar] [CrossRef]
- Zhao, T.; Yang, Z.; Tian, W.; Chen, Z. Vibration and Acoustic Radiation Characteristics Analysis of Composite Laminated Plate in Hygrothermal Environments. Acta Aeronaut. Astronaut. Sin. 2017, 38, 221038. [Google Scholar]
- Lee, J.H.; Kim, J. Study on Sound Transmission Characteristics of a Cylindrical Shell Using Analytical and Experimental Models. Appl. Acoust. 2003, 64, 611–632. [Google Scholar] [CrossRef]
- Ali, N.; Sohrab, A. Optimization of Sound Transmission Loss Through a Thin Functionally Graded Material Cylindrical Shell. Shock Vib. 2014, 2014, 10. [Google Scholar] [CrossRef]
- Gupta, P.; Parey, A. Prediction of sound transmission loss of cylindrical acoustic enclosure using statistical energy analysis and its experimental validation. J. Acoust. Soc. Am. 2022, 151, 544. [Google Scholar] [CrossRef]
- Oliazadeh, P.; Farshidianfar, A. Analysis of Different Techniques to Improve Sound Transmission Loss in Cylindrical Shells. J. Sound Vib. 2017, 389, 276–291. [Google Scholar] [CrossRef]
- Koval, L.R. Effect of Air Flow, Panel Curvature, and Internal Pressurization on Field-Incidence Transmission Loss. J. Acoust. Soc. Am. 1967, 59, 1379–1385. [Google Scholar] [CrossRef]
- Wang, Y.-Z.; Ma, L. Sound insulation performance of curved sandwich structure combined with acoustic metamaterials. J. Vib. Control 2023, 10775463231187694. [Google Scholar] [CrossRef]
- Liu, B.; Feng, L.; Nilsson, A. Sound Transmission Through Curved Aircraft Panels with Stringer and Ring Frame Attachments. J. Sound Vib. 2007, 300, 949–973. [Google Scholar] [CrossRef]
- Parrinello, A.; Kesour, K.; Ghiringhelli, G.L.; Atalla, N. Diffuse field transmission through multilayered cylinders using a Transfer Matrix Method. Mech. Syst. Signal Process. 2020, 136, 106514. [Google Scholar] [CrossRef]
- Daneshjou, K.; Nouri, A.; Talebitooti, R. Sound Transmission Through Laminated Composite Cylindrical Shells Using Analytical Model. Arch. Appl. Mech. 2007, 77, 363–379. [Google Scholar] [CrossRef]
- Thongchom, C.; Jearsiripongkul, T.; Refahati, N.; Roudgar Saffari, P.; Roodgar Saffari, P.; Sirimontree, S.; Keawsawasvong, S. Sound Transmission Loss of a Honeycomb Sandwich Cylindrical Shell with Functionally Graded Porous Layers. Buildings 2022, 12, 151. [Google Scholar] [CrossRef]
- Gong, Y.; Ge, J. Investigation of Sound Insulation Performance of High-Speed Maglev Train Porthole Based on the Wave Theory. J. Huazhong Univ. Sci. Tech. 2020, 6, 57–63. [Google Scholar]
- Chronopoulos, D.; Ichchou, M.; Troclet, B.; Bareille, O. Thermal Effects on the Sound Transmission Through Aerospace Composite Structures. Aerosp. Sci. Technol. 2013, 30, 192–199. [Google Scholar] [CrossRef]
- Qian, G.; Li, Y. Analysis of Dynamic and Acoustic Radiation Characters for a Flat-plate Under Thermal Environments. Int. J. Appl. Mech. 2012, 4, 1250028. [Google Scholar] [CrossRef]
- Geng, Q.; Li, H.; Li, Y. Dynamic and Acoustic Response of a Clamped Rectangular Plate in Thermal Environments: Experiment and Numerical Simulation. J. Acoust. Soc. Am. 2014, 135, 2674–2682. [Google Scholar]
- Liu, Y.; Li, Y. Vibration and Acoustic Response of Rectangular Sandwich Plate Under Thermal Environment. Shock Vib. 2013, 20, 1011–1030. [Google Scholar] [CrossRef]
- Rahmatnezhad, K.; Zarastvand, M.R.; Talebitooti, R. Mechanism study and power transmission feature of acoustically stimulated and thermally loaded composite shell structures with double curvature. Compos Struct. 2021, 276, 114557. [Google Scholar]
- Zhang, G.; Ge, J. Vibration and Acoustic Radiation Characteristics of Simply Supported Curved Plate in Thermal Environment. Arch. Appl. Mech. 2022, 92, 3163–3177. [Google Scholar]
- Li, X.; Yu, K.; Zhao, R.; Han, J.; Song, H. Sound Transmission Loss of Composite and Sandwich Panels in Thermal Environment. Compos. Part B Eng. 2018, 133, 1–14. [Google Scholar] [CrossRef]
- Xin, F.X.; Gong, J.Q.; Ren, S.W.; Huang, L.X.; Lu, T.J. Thermoacoustic Response of a Simply Supported Isotropic Rectangular Plate in Graded Thermal Environments. Appl. Math. Modell. 2017, 44, 456–469. [Google Scholar]
- Haddadpour, H.; Mahmoudkhani, S.; Navazi, H.M. Free Vibration Analysis of Functionally Graded Cylindrical Shells Including Thermal Effects. Thin Walled Struct. 2007, 45, 591–599. [Google Scholar]
- Guo, L.; Ge, J.; Liu, S. Analysis of Vibration and Acoustic Characteristics of a Simply Supported Double-Panel Partition Under Thermal Environment. Shock Vib. 2020, 2020, 5613232. [Google Scholar] [CrossRef]
- Gatewood, B.E. Thermal Stresses; McGraw-Hill: New York, NY, USA, 1957. [Google Scholar]
- Flügge, W. Statik and Dynamik der Schalen; Springer: Berlin, Germany, 1957. [Google Scholar]
- Soedel, W. Vibrations of Shells and Plates; Marcel Dekker: New York, NY, USA, 1981. [Google Scholar]
- Xin, F.X.; Lu, T.J.; Chen, C.Q. Sound Transmission Through Simply Supported Finite Double-Panel Partitions with Enclosed Air Cavity. J. Vib. Acoust. 2010, 132, 325–326. [Google Scholar]
- Pellicier, A.; Trompette, N. A Review of Analytical Methods, based on the Wave Approach, to Compute Partitions Transmission Loss. Appl. Acoust. 2007, 68, 1192–1212. [Google Scholar] [CrossRef]
- Lin, G.; Guo, H.G.; Zhao, Y.T. Aluminum Alloy Application Manual; Mechanical Industry Press: Beijing, China, 2006. [Google Scholar]
- Papadopoulos, C.I. Development of an Optimised, Standard-Compliant Procedure to Calculate Sound Transmission Loss: Numerical Measurements. Appl. Acoust. 2003, 64, 1069–1085. [Google Scholar]
- Lee, J.-H.; Kim, J. Analysis of Sound Transmission Through Periodically Stiffened Panels by Space-Harmonic Expansion Method. J. Sound Vib. 2002, 251, 349–366. [Google Scholar] [CrossRef]
- Wallace, C.E. Radiation Resistance of a Rectangular Panel. J. Acoust. Soc. Am. 1972, 51, 946–952. [Google Scholar] [CrossRef]
- Cortés, F.; Elejabarrieta, M.J. Structural Vibration of Flexural Beams with Thick Unconstrained Layer Damping. Int. J. Solids Struct. 2008, 45, 5805–5813. [Google Scholar] [CrossRef] [Green Version]
- Jeyaraj, P.; Ganesan, N.; Padmanabhan, C. Vibration and Acoustic Response of a Composite Plate with Inherent Material Damping in a Thermal Environment. J. Sound Vib. 2009, 320, 322–338. [Google Scholar] [CrossRef]
Parameters | Symbols and Values |
---|---|
Opening angle | θ0 = 60° |
Radius of curvature | R0 = 1 m |
Axial length | L0 = 1.5 m |
Thickness | h = 0.01 m |
Young’s modulus | E = 71 GPa |
Poisson’s ratio | υ = 0.33 |
Density | ρ = 2700 kg/m3 |
Specific heat | C = 880 J/(kg·K) |
Thermal expansion coefficient | κ = 236 W/(m·K) |
Coefficient of thermal conductivity | α = 2.3 × 10−5 m/(m·K) |
Air density | ρ = 1.225 kg/m3 |
Speed of sound | c0 = 340 m/s |
Sequence | T1 = 0 °C | T1 = −10 °C | T1 = −20 °C | T1 = −30 °C | T1 = −40 °C | T1 = −50 °C |
---|---|---|---|---|---|---|
(2, 1) | 134.2 | 150.5 | 165.1 | 178.5 | 191.0 | 202.7 |
(3, 1) | 217.2 | 238.6 | 258.3 | 276.5 | 293.6 | 309.8 |
(1, 1) | 269.5 | 272.3 | 275.1 | 277.9 | 280.6 | 283.4 |
(3, 2) | 285.7 | 304.8 | 322.7 | 339.7 | 355.9 | 371.4 |
(2, 2) | 299.0 | 309.0 | 318.8 | 328.2 | 337.4 | 346.4 |
(4, 1) | 371.1 | 393.3 | 414.3 | 434.3 | 453.4 | 471.8 |
(3, 3) | 402.4 | 419.2 | 435.3 | 450.8 | 465.9 | 480.4 |
(4, 2) | 412.8 | 434.6 | 455.4 | 475.2 | 494.3 | 510.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Ge, J.; Cheng, S.; Zhao, T.; Liu, S. Analysis of the Effect of Temperature on the Sound Transmission Loss of a Curved Plate. Appl. Sci. 2023, 13, 9116. https://doi.org/10.3390/app13169116
Zhang G, Ge J, Cheng S, Zhao T, Liu S. Analysis of the Effect of Temperature on the Sound Transmission Loss of a Curved Plate. Applied Sciences. 2023; 13(16):9116. https://doi.org/10.3390/app13169116
Chicago/Turabian StyleZhang, Guowei, Jianmin Ge, Shiquan Cheng, Tianyu Zhao, and Shu Liu. 2023. "Analysis of the Effect of Temperature on the Sound Transmission Loss of a Curved Plate" Applied Sciences 13, no. 16: 9116. https://doi.org/10.3390/app13169116
APA StyleZhang, G., Ge, J., Cheng, S., Zhao, T., & Liu, S. (2023). Analysis of the Effect of Temperature on the Sound Transmission Loss of a Curved Plate. Applied Sciences, 13(16), 9116. https://doi.org/10.3390/app13169116