Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China
Abstract
:1. Introduction
2. Geological Setting
3. Data Sources
4. Methodology
4.1. Image Preprocessing
4.2. Digital Image Processing
4.2.1. Optimal Index Analysis
4.2.2. Decorrelation Stretch (DS)
4.2.3. Band Ratio (BR)
4.2.4. Principal Component Analysis (PCA)
4.2.5. Independent Component Analysis (ICA)
4.2.6. Minimum Noise Fraction (MNF)
4.2.7. False Color Composite (FCC)
4.3. Machine Learning Classification
4.4. De-Interfered Anomaly Principal Component Thresholding Technology
5. Results and Discussion
5.1. Image Enhancement Results
5.1.1. OIF
5.1.2. Band Ratio (BR)
5.1.3. Principal Component Analysis (PCA) and Independent Component Analysis (ICA)
5.1.4. Minimum Noise Fraction (MNF) and Decorrelation Stretch (DS)
5.1.5. False Color Composite (FCC)
5.2. Machine Learning Results
5.3. Anomaly Extraction
5.4. Field Geological Verification
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiong, F.; Yang, J.; Robinson, P.T.; Xu, X.; Liu, Z.; Li, Y.; Li, J.; Chen, S. Origin of podiform chromitite, a new model based on the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 27, 525–542. [Google Scholar] [CrossRef]
- Wang, X.B.; Zhou, X.; Hao, Z.G. Some opinions on further exploration for chromite deposits in the Luobusha area, Tibet, China. Geol. Bull. China 2010, 29, 105–114. [Google Scholar]
- Pournamdari, M.; Hashim, M.; Pour, A.B. Application of ASTER and Landsat TM Data for Geological Mapping of Esfandagheh Ophiolite Complex, Southern Iran. Resour. Geol. 2014, 64, 233–246. [Google Scholar] [CrossRef]
- Xiong, F.H.; Yang, J.S.; Liu, Z.; Guo, G.L.; Chen, S.Y.; Xu, X.Z.; Li, Y.; Liu, F. High-Cr and high-Al chromitite found in western Yar-lung-Zangbo suture zone in Tibet. Acta Petrol. Sin. 2013, 29, 1878–1908. [Google Scholar]
- Yang, J.; Lian, D.; Wei, W.; Yang, Y.; Cai, P.; Rui, H.; Shi, R.; Xiong, F. Chromitites in ophiolites: Questions and thoughts. Acta Geol. Sin. 2022, 96, 1608–1634. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Robinson, P.T.; Xiong, F.; Ba, D.; Guo, G. Origin of ultrahigh pressure and highly reduced minerals in podiform chromitites and associated mantle peridotites of the Luobusa ophiolite, Tibet. Gondwana Res. 2015, 27, 686–700. [Google Scholar] [CrossRef]
- Zhang, P.-F.; Zhou, M.-F.; Malpas, J.; Robinson, P.T. Origin of high-Cr chromite deposits in nascent mantle wedges: Petrological and geochemical constraints from the Neo-Tethyan Luobusa ophiolite, Tibet. Ore Geol. Rev. 2020, 123, 103581. [Google Scholar] [CrossRef]
- He, Y.; Zhu, X.; She, Y.; Ma, J.; Sun, J.; Gao, Z.; Wan, H.; Chen, Y. Mechanism of formation of podiform chromitite: Insights from the oxidation states of podiform chromitites and host peridotites from the Luobusa ophiolite, southern Tibet. Ore Geol. Rev. 2021, 139, 104483. [Google Scholar] [CrossRef]
- Zhang, Q.; Ba, D.; Xiong, F.; Yang, J. Discussion on genesis process and deep prospecting breakthrough of Luobusa chromitite, Tibet. Geol. China 2017, 44, 224–241. [Google Scholar] [CrossRef]
- Yang, J.S.; Bai, W.J.; Fang, Q.S.; Rong, H. Ultrahigh-pressure Minerals and New Minerals from the Luobusa. Acta Geosci.-Casinica 2008, 29, 263–274. [Google Scholar] [CrossRef]
- Chung, Y.S.; Yoon, S.U.; Heo, S.; Kim, Y.S.; Kim, Y.-H.; Han, G.D.; Ahn, J. Classification of Tree Composition in the Forest Using Images from SENTINEL-2: A Case Study of Geomunoreum Forests Using NDVI Images. Appl. Sci. 2023, 13, 303. [Google Scholar] [CrossRef]
- Zheng, S.; An, Y.; Shi, P.; Zhao, T. Mapping the Lithological Features and Ore-Controlling Structures Related to Ni–Cu Mineralization in the Eastern Tian Shan, NW China from ASTER Data. Remote Sens. 2021, 13, 206. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote. Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Tompolidi, A.-M.; Sykioti, O.; Koutroumbas, K.; Parcharidis, I. Spectral Unmixing for Mapping a Hydrothermal Field in a Volcanic Environment Applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI Satellite Multispectral Data: The Nisyros (Greece) Case Study. Remote Sens. 2020, 12, 4180. [Google Scholar] [CrossRef]
- Eslami, A.; Ghaderi, M.; Rajendran, S.; Pour, A.B.; Hashim, M. Integration of ASTER and landsat TM remote sensing data for chromite prospecting and lithological mapping in Neyriz ophiolite zone, south Iran. Resour. Geol. 2015, 65, 375–388. [Google Scholar] [CrossRef]
- Belgrano, T.M.; Diamond, L.W.; Novakovic, N.; Hewson, R.D.; Hecker, C.A.; Wolf, R.C.; Zieliński, L.d.D.; Kuhn, R.; Gilgen, S.A. Multispectral discrimination of spectrally similar hydrothermal minerals in mafic crust: A 5000 km2 ASTER alteration map of the Oman–UAE ophiolite. Remote Sens. Environ. 2022, 280, 113211. [Google Scholar] [CrossRef]
- Taha, A.M.M.; Xi, Y.; He, Q.; Hu, A.; Wang, S.; Liu, X. Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan. Minerals 2022, 13, 49. [Google Scholar] [CrossRef]
- Eskandari, A.; Hosseini, M.; Nicotra, E. Application of Satellite Remote Sensing, UAV-Geological Mapping, and Machine Learning Methods in the Exploration of Podiform Chromite Deposits. Minerals 2023, 13, 251. [Google Scholar] [CrossRef]
- Dong, X.; Gan, F.; Li, N.; Zhang, S.; Li, T. Mineral mapping in the Duolong porphyry and epithermal ore district, Tibet, using the Gaofen-5 satellite hyperspectral remote sensing data. Ore Geol. Rev. 2022, 151, 105222. [Google Scholar] [CrossRef]
- Rothery, D.A. Improved discrimination of rock units using Landsat Thematic Mapper imagery of the Oman ophiolite. J. Geol. Soc. London 1987, 144, 587–597. [Google Scholar] [CrossRef]
- Xiong, Y.; Khan, S.D.; Mahmood, K.; Sisson, V.B. Lithological mapping of Bela ophiolite with remote-sensing data. Int. J. Remote Sens. 2011, 32, 4641–4658. [Google Scholar] [CrossRef]
- Abrams, M.; Rothery, D.; Pontual, A. Mapping in the Oman ophiolite using enhanced Landsat Thematic Mapper images. Tectonophysics 1988, 151, 387–401. [Google Scholar] [CrossRef]
- Khan, S.D.; Mahmood, K.; Casey, J.F. Mapping of Muslim Bagh ophiolite complex (Pakistan) using new remote sensing, and field data. J. Asian Earth Sci. 2007, 30, 333–343. [Google Scholar] [CrossRef]
- Sultan, M.; Arvidson, R.E.; Sturchio, N.C. Mapping of serpentinites in the Eastern Desert of Egypt by using Landsat thematic mapper data. Geology 1986, 14, 995–999. [Google Scholar] [CrossRef]
- Khan, S.D.; Mahmood, K. The application of remote sensing techniques to the study of ophiolites. Earth-Sci. Rev. 2008, 89, 135–143. [Google Scholar] [CrossRef]
- Muthamilselvan, A. Application of Supervised Classification and CrostaTechnique for Lithological Discrimination in Parts of South Khetri Belt, Sikar District, Rajasthan. J. Indian Soc. Remote Sens. 2016, 45, 377–383. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Integration of spectral, spatial and morphometric data into lithological mapping: A comparison of different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Sci. 2017, 146, 90–102. [Google Scholar] [CrossRef]
- Abdul-Qadir, A.M. Supervised Classification for Lithologic Discrimination in Shaikh Ibrahim Area, NW Iraq Using Landsat Images. Arab. J. Sci. Eng. 2014, 39, 437–451. [Google Scholar] [CrossRef]
- Rajendran, S.; Nasir, S. Mapping of Moho and Moho Transition Zone (MTZ) in Samail ophiolites of Sultanate of Oman using remote sensing technique. Tectonophysics 2015, 657, 63–80. [Google Scholar] [CrossRef]
- Xu, X.; Zoheir, B.; Yang, J.; Xiong, F.; Guo, G.; Feng, G.; Li, Z.; Li, T. Tectonized Neotethyan lithosphere in southeastern Tibet: Results of the Luobusa ophiolite drilling. Lithos 2023, 436–437, 106947. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.-Z.; Liu, T.; Wu, F.-Y. Evolution of mantle peridotites from the Luobusa ophiolite in the Tibetan Plateau: Sr-Nd-Hf-Os isotope constraints. Lithos 2020, 362–363, 105477. [Google Scholar] [CrossRef]
- Yamamoto, H.; Yamamoto, S.; Kaneko, Y.; Terabayashi, M.; Komiya, T.; Katayama, I.; Iizuka, T. Imbricate structure of the Luobusa Ophiolite and surrounding rock units, southern Tibet. J. Asian Earth Sci. 2007, 29, 296–304. [Google Scholar] [CrossRef]
- Hébert, R.; Bezard, R.; Guilmette, C.; Dostal, J.; Wang, C.; Liu, Z. The Indus–Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes, southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys. Gondwana Res. 2012, 22, 377–397. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Ba, D.; Guo, G.; Robinson, P.T.; Li, J. Petrogenesis of the Kangjinla peridotite in the Luobusa ophiolite, Southern Tibet. J. Asian Earth Sci. 2011, 42, 553–568. [Google Scholar] [CrossRef]
- Xu, X.; Yang, J.; Chen, S.; Fang, Q.; Bai, W.; Ba, D. Unusual mantle mineral group from chromitite orebody Cr-11 in Luobusa ophiolite of Yarlung-Zangbo suture zone, Tibet. J. Earth Sci.-China 2009, 20, 284–302. [Google Scholar] [CrossRef]
- Fahui, X.; Jingsui, Y.; Yuan, L.; Zhao, L.; Guolin, G.; Wenda, Z.; Songyong, C.; Yibing, L.; Xiangzhen, X.; Xiaolu, N. Tectonic Setting of Dongbo Ophiolite in the Western Portion of the Yarlung Zangbo Suture Zone, Tibet. Acta Geosci. Sinca 2015, 36, 31–40. [Google Scholar] [CrossRef]
- Liang, F.; Yang, J.; Xu, Z.; Zhao, J. Chromium in the olivine lattice: Chromium-rich olivines and their implication of deep mantle origin in the Luobusa mantle peridotite and chromitite, Tibet. Acta Petrol. Sin. 2014, 30, 2125–2136. [Google Scholar]
- Xiong, F.; Yang, J.; Liu, Z. Multi-satge formation of the podiform chromitite. Geol. China 2013, 40, 820–839. [Google Scholar] [CrossRef]
- Shi, R.; Alard, O.; Zhi, X.; O’Reilly, S.Y.; Pearson, N.J.; Griffin, W.L.; Zhang, M.; Chen, X. Multiple events in the Neo-Tethyan oceanic upper mantle: Evidence from Ru–Os–Ir alloys in the Luobusa and Dongqiao ophiolitic podiform chromitites, Tibet. Earth Planet. Sci. Lett. 2007, 261, 33–48. [Google Scholar] [CrossRef]
- Liu, C.-Z.; Wu, F.-Y.; Wilde, S.A.; Yu, L.-J.; Li, J.-L. Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 2010, 114, 413–422. [Google Scholar] [CrossRef]
- Zhou, E. Present situationand advances inthe study of podiformchromite deposits. Acta Petrol.-Alogica 2011, 30, 530–542. [Google Scholar] [CrossRef]
- Erbin, Z.; Zhusen, Y.; Wan, J.; Zengqian, H.; Fusheng, G.; Jun, H. Study on mineralogy of Cr-spinel and genesis of Luobusha chromite deposit in South Tibet. Acta Petrol. Sin. 2011, 27, 2060–2072. [Google Scholar]
- Guo, G.L.; Yang, J.S.; Liu, X.D.; Xu, X.Z.; Wu, Y. In situ research on PGM in Luobusa ophiolitic chromitites, Tibet: Implications for the crystallization of the chromite. Acta Petrol. Sin. 2016, 32, 3673–3684. [Google Scholar]
- Yang, J.; Xu, X.; Zhang, Z.; Rong, H.; Liu, Y.; Xiong, F.; Liang, F.; Liu, Z.; Liu, F.; Li, J.; et al. Ophiolite-type Diamond and Deep Genesis of Chromitite. Acta Geosci. Sin. 2013, 34, 643–653. [Google Scholar] [CrossRef]
- Bai, W.J.; Yang, J.S.; Shi, N.C.; Fang, Q.S.; Dai, M.Q.; Xiong, M.; Yan, B.G. A Discovery of Ultrahigh Pressure Minerals-Wustite and Native Ironfrom the Mantle Ophiolite, at Luobusa, Tibet. Geol. Rev. 2004, 50, 184–188. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Honarmand, M.; Abkar, A.A. A Comparative Study of Landsat-7 and Landsat-8 Data Using Image Processing Methods for Hydrothermal Alteration Mapping. Resour. Geol. 2017, 67, 72–88. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Nwaila, G.T.; Zhang, S.E.; Bourdeau, J.E.; Ghorbani, Y.; Carranza, E.J.M. Artificial intelligence-based anomaly detection of the Assen iron deposit in South Africa using remote sensing data from the Landsat-8 Operational Land Imager. Artif. Intell. Geosci. 2022, 3, 71–85. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Vavelidis, M.; Melfos, V.; Artashova, M. Searching for ancient gold mines in Filippoi area, Macedonia, Greece, using Worldview-2 satellite imagery. Geocarto Int. 2017, 32, 87–96. [Google Scholar] [CrossRef]
- Martin, J.; Eugenio, F.; Marcello, J.; Medina, A. Automatic Sun Glint Removal of Multispectral High-Resolution Worldview-2 Imagery for Retrieving Coastal Shallow Water Parameters. Remote Sens. 2016, 8, 37. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Tansey, K.; Naden, J. The Impact of Vegetation on Lithological Mapping Using Airborne Multispectral Data: A Case Study for the North Troodos Region, Cyprus. Remote Sens. 2014, 6, 10860–10887. [Google Scholar] [CrossRef]
- Evans, D.J.A.; Ewertowski, M.; Jamieson, S.S.R.; Orton, C. Surficial geology and geomorphology of the Kumtor Gold Mine, Kyrgyzstan: Human impacts on mountain glacier landsystems. J. Maps 2016, 12, 757–769. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Zeng, W.; Fang, X. A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int. J. Digit. Earth 2016, 9, 925–941. [Google Scholar] [CrossRef]
- Rapinel, S.; Clément, B.; Magnanon, S.; Sellin, V.; Hubert-Moy, L. Identification and mapping of natural vegetation on a coastal site using a Worldview-2 satellite image. J. Environ. Manag. 2014, 144, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Elahi, F.; Muhammad, K.; Din, S.U.; Khan, M.F.A.; Bashir, S.; Hanif, M. Lithological Mapping of Kohat Basin in Pakistan Using Multispectral Remote Sensing Data: A Comparison of Support Vector Machine (SVM) and Artificial Neural Network (ANN). Appl. Sci. 2022, 12, 12147. [Google Scholar] [CrossRef]
- Hashim, M.; Ahmad, S.; Md Johari, M.A.; Pour, A.B. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Adv. Space Res. 2013, 51, 874–890. [Google Scholar] [CrossRef]
- Benomar, T.; Fuling, B. Improved geological mapping using landsat-5 TM data in Weixi area, Yunnan province China. Geo-Spat. Inf. Sci. 2005, 8, 110–114. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). J. Afr. Earth Sci. 2006, 44, 196–202. [Google Scholar] [CrossRef]
- Mwaniki, M.W.; Matthias, M.S.; Schellmann, G. Application of Remote Sensing Technologies to Map the Structural Geology of Central Region of Kenya. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1855–1867. [Google Scholar] [CrossRef]
- Rajendran, S.; Al-Khirbash, S.; Pracejus, B.; Nasir, S.; Al-Abri, A.H.; Kusky, T.M.; Ghulam, A. ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geol. Rev. 2012, 44, 121–135. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Liu, T.; Wang, P.; Wang, C.; Feng, Q.; Guo, T. The Application of High Spatial Resolution Data to Remote Sensing Geological Survey in the Luobusa Area, Tibet. Geoscience 2017, 31, 1284–1293. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Liu, T.; Wang, P.; Guo, T. Delineation of peridotites in Luobusha, Tibet with remote sensing data based on spectral enhancement technology. Miner. Explor. 2018, 9, 158–164. [Google Scholar]
- Panchal, S.; Thakker, R. Implementation and Comparative Quantitative Assessment of Different Multispectral Image Pansharpening Approaches. Signal Image Process. Int. J. 2015, 6, 35–48. [Google Scholar] [CrossRef]
- Ruisi, Z.; Min, Z.; Jianping, C. Study on Geological Structural Interpretation Based on Worldview-2 Remote Sensing Image and Its Implementation. Procedia Environ. Sci. 2011, 10, 653–659. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, H.; Li, H.; Deng, X.; Khan, R.; SohTamehe, L.; Atta, A.; Lang, X.; Guo, X. Quantitative Remote Sensing of Metallic Elements for the Qishitan Gold Polymetallic Mining Area, NW China. Remote Sens. 2021, 13, 2519. [Google Scholar] [CrossRef]
- Yang, W.; Zheng, Y.; Liu, T.; Wang, C. Remote Sensing Monitoring on Mine of WorldView-2 Satellite: A Case Study of the Luobusa Area, Tibet. Geoscience 2018, 32, 392–397. [Google Scholar] [CrossRef]
- Chavez, J.P. Image Processing techniques for Thermatic Mapper data. Proc. ASPRS-ACSM Tech. Pap. 1984, 2, 728–742. [Google Scholar]
- Abdelkader, M.A.; Watanabe, Y.; Shebl, A.; El-Dokouny, H.A.; Dawoud, M.; Csámer, A. Effective delineation of rare metal-bearing granites from remote sensing data using machine learning methods: A case study from the Umm Naggat Area, Central Eastern Desert, Egypt. Ore Geol. Rev. 2022, 150, 105184. [Google Scholar] [CrossRef]
- Khan, M.F.A.; Muhammad, K.; Bashir, S.; Din, S.U.; Hanif, M. Mapping Allochemical Limestone Formations in Hazara, Pakistan Using Google Cloud Architecture: Application of Machine-Learning Algorithms on Multispectral Data. ISPRS Int. J. Geo-Inf. 2021, 10, 58. [Google Scholar] [CrossRef]
- Pournamdari, M.; Hashim, M. Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data. Arab. J. Geosci. 2014, 7, 1973–1983. [Google Scholar] [CrossRef]
- Bishta, A.Z.; Sonbul, A.R.; Qudsi, I.Z. Utilizing the image processing techniques in mapping the geology of Al Taif area, central western Arabian Shield, Saudi Arabia. Arab. J. Geosci. 2015, 8, 4161–4175. [Google Scholar] [CrossRef]
- Kusky, T.M.; Ramadan, T.M. Structural controls on Neoproterozoic mineralization in the South Eastern Desert, Egypt: An integrated field, Landsat TM, and SIR-C/X SAR approach. J. Afr. Earth Sci. 2002, 35, 107–121. [Google Scholar] [CrossRef]
- Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Beiranvand Pour, A.; Sohrabi, G. A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 2020, 12, 105. [Google Scholar] [CrossRef]
- Ibrahim, W.; Watanabe, K.; Yonezu, K. Structural and litho-tectonic controls on Neoproterozoic base metal sulfide and gold mineralization in North Hamisana shear zone, South Eastern Desert, Egypt: The integrated field, structural, Landsat 7 ETM + and ASTER data approach. Ore Geol. Rev. 2016, 79, 62–77. [Google Scholar] [CrossRef]
- Van der Meer, F. Mapping the degree of serpentinization within ultramafic rock bodies using imaging spectrometer data. J. Rock Mech. Min. Sci. Géoméch. Abstr. 1995, 32, 330. [Google Scholar] [CrossRef]
- Inzana, J.; Kusky, T.; Higgs, G.; Tucker, R. Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar. J. Afr. Earth Sci. 2003, 37, 59–72. [Google Scholar] [CrossRef]
- ElGalladi, A.; Araffa, S.; Mekkawi, M.; Abd-AlHai, M. Exploring mineralization zones using remote sensing and aeromagnetic data, West Allaqi Area, Eastern-Desert, Egypt. Egypt. J. Remote Sens. Space Sci. 2022, 25, 417–433. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, J.; Jiang, D.; Zhuang, D.; Mansaray, L.R. Lithological discrimination of the mafic-ultramafic complex, Huitongshan, Beishan, China: Using ASTER data. J. Earth Sci.-China 2014, 25, 529–536. [Google Scholar] [CrossRef]
- Chen, Q.; Xia, J.; Zhao, Z.; Zhou, J.; Zhu, R.; Zhang, R.; Zhao, X.; Chao, J.; Zhang, X.; Zhang, G. Interpretation of hydrothermal alteration and structural framework of the Huize Pb–Zn deposit, SW China, using Sentinel-2, ASTER, and Gaofen-5 satellite data: Implications for Pb–Zn exploration. Ore Geol. Rev. 2022, 150, 105154. [Google Scholar] [CrossRef]
- El-Wahed, M.A.; Kamh, S.; Abu Anbar, M.; Zoheir, B.; Hamdy, M.; Abdeldayem, A.; Lebda, E.M.; Attia, M. Multisensor Satellite Data and Field Studies for Unravelling the Structural Evolution and Gold Metallogeny of the Gerf Ophiolitic Nappe, Eastern Desert, Egypt. Remote Sens. 2023, 15, 1974. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Pour, A.B.; Muslim, A.M.; Rahmani, O.; Hashim, M.; Zoheir, B.; Pradhan, B.; Misra, A.; Aminpour, S.M. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 2020, 12, 1239. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central High Atlas, Morocco). Adv. Space Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Wang, J.; Chang, C.-I. Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2015, 6, 600–665. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Hong, J.K.; Park, Y. Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula. Ore Geol. Rev. 2019, 108, 112–133. [Google Scholar] [CrossRef]
- Kumar, C.; Chatterjee, S.; Oommen, T.; Guha, A. Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. Int. J. Appl. Earth Obs. Geoinform. 2020, 86, 102006. [Google Scholar] [CrossRef]
- Gabr, S.S.; Hassan, S.M.; Sadek, M.F. Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol. Rev. 2015, 71, 1–13. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Pournamdari, M. Chromitite prospecting using landsat tm and aster remote sensing data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, II-2/W2, 99–103. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remote Sens. 2005, 26, 1007–1011. [Google Scholar] [CrossRef]
- Puertas, O.L.; Brenning, A.; Meza, F.J. Balancing misclassification errors of land cover classification maps using support vector machines and Landsat imagery in the Maipo river basin (Central Chile, 1975–2010). Remote Sens. Environ. 2013, 137, 112–123. [Google Scholar] [CrossRef]
- Yousefi, M.; Tabatabaei, S.H.; Rikhtehgaran, R.; Pour, A.B.; Pradhan, B. Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using ASTER Remote Sensing Imagery. Minerals 2021, 11, 1235. [Google Scholar] [CrossRef]
- Othman, A.A.; Gloaguen, R. Improving Lithological Mapping by SVM Classification of Spectral and Morphological Features: The Discovery of a New Chromite Body in the Mawat Ophiolite Complex (Kurdistan, NE Iraq). Remote Sens. 2014, 6, 6867–6896. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M.J. Machine learning predictive models for mineral prospectivity: An evaluation of neural net-works, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Shabankareh, M.; Hezarkhani, A. Application of support vector machines for copper potential mapping in Kerman region, Iran. J. Afr. Earth Sci. 2015, 118, 116–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, C. Study of optimum discriminator of multi-channel remote sensing anomaly for recognition of porphyry Cu deposits in Gangdese belt. Miner. Depos. 2012, 31, 671–698. [Google Scholar]
- Gan, F.P.; Wang, R.S.; Ma, A.N.; Zhang, Z.G.; Li, M.X. Integration for Extracting and Mineral Analysis Models for Geological Application Using Remote Sensing Data. J. Remote Sens. 2003, 7, 207–213. [Google Scholar] [CrossRef]
- Pournamdari, M.; Hashim, M.; Pour, A.B. Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran. Adv. Space Res. 2014, 54, 694–709. [Google Scholar] [CrossRef]
- Abdelaziz, R.; El-Rahman, Y.A.; Wilhelm, S. Landsat-8 data for chromite prospecting in the Logar Massif, Afghanistan. Heliyon 2018, 4, e00542. [Google Scholar] [CrossRef]
- Sonbul, A.R.; El-Shafei, M.K.; Bishta, A.Z. Using remote sensing techniques and field-based structural analysis to explore new gold and associated mineral sites around Al-Hajar mine, Asir terrane, Arabian Shield. J. Afr. Earth Sci. 2016, 117, 285–302. [Google Scholar] [CrossRef]
- Mehdikhani, B.; Imamalipour, A. ASTER-Based Remote Sensing Image Analysis for Prospection Criteria of Podiform Chromite at the Khoy Ophiolite (NW Iran). Minerals 2021, 11, 960. [Google Scholar] [CrossRef]
- Crosta, A.P.; De Filho, C.R.S.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Zoheir, B.; Emam, A. Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt. J. Afr. Earth Sci. 2012, 66–67, 22–34. [Google Scholar] [CrossRef]
- Ahmadfaraj, M.; Mirmohammadi, M.; Afzal, P. Application of fractal modeling and PCA method for hydrothermal alteration mapping in the Saveh area (Central Iran) based on ASTER multispectral data. Int. J. Min. Geo-Eng. 2016, 50, 37–48. [Google Scholar] [CrossRef]
- Robinson, P.T.; Trumbull, R.B.; Schmitt, A.; Yang, J.-S.; Li, J.-W.; Zhou, M.-F.; Erzinger, J.; Dare, S.; Xiong, F. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites. Gondwana Res. 2015, 27, 486–506. [Google Scholar] [CrossRef]
- Bai, W.J.; Yang, J.S.; Fang, Q.S. Zhang. Study on a storehouse of ultrahigh pressure mantle minerals—Podiform chromite deposits. Earth Sci. Front. 2001, 8, 111–121. [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, X.; Liu, X.; Li, Z.; Wu, Z.; Jing, W. Imprints of fluid process of shell dunite in ophiolitic chromite deposits: Evi-dences from geology, petrology and crystal chemistry of olivine found in Luobusa and Zedang ophiolites in the Yarlung Zangbo suture zone, Tibet. Earth Sci. Front. 2019, 26, 272–285. [Google Scholar] [CrossRef]
- Li, D. Mantleshear Mineralization of Luobushachromites, Tibet. Chin. J. Nonferrous Met. 1997, 7, 4–8. [Google Scholar]
- Li, D. Structural processes of metallogenic evolution of luobusha chromite deposits. Geoscience 1995, 9, 450–458. [Google Scholar]
- Zhang, L.; Yang, J.; Paul, T. Origin of Listwanite in the Luobusa Ophiolite, Tibet, Implications for Chromite Stability in Hy-drothermal Systems. Acta Geol. Sin. 2015, 89, 402–417. [Google Scholar]
Satellite | Band | Range/μm | Resolution/m | Swath Width/km | Altitude/km | Launch Date |
---|---|---|---|---|---|---|
Landsat8 | B1 Coastal | 0.43–0.45 | 30 | 185 | 705 | February 2013 |
B2 Blue | 0.45–0.51 | |||||
B3 Green | 0.53–0.59 | |||||
B4 Red | 0.64–0.67 | |||||
B5 NIR | 0.85–0.88 | |||||
B6 SWIR 1 | 1.57–1.65 | |||||
B7 SWIR 2 | 2.11–2.29 | |||||
B8 Pan | 0.50–0.68 | 15 | ||||
B9 Cirrus | 1.36–1.38 | 30 | ||||
B10 TIR 1 | 10.6–11.19 | 100 | ||||
B11 TIR 2 | 11.5–12.51 | |||||
WorldView-2 | B1 Coastal | 400–450 | 1.84 | 16.4 | 770 | October 2009 |
B2 Blue | 450–510 | |||||
B3 Green | 510–580 | |||||
B4 Yellow | 585–625 | |||||
B5 Red | 630–690 | |||||
B6 Red edge | 705–745 | |||||
B7 NIR 1 | 770–895 | |||||
B8 NIR 2 | 860–1040 | |||||
Pan | 450~1040 | 0.46 |
R | G | B | OIF |
---|---|---|---|
8 | 6 | 4 | 255.29 |
8 | 6 | 3 | 250.57 |
8 | 6 | 1 | 229.29 |
8 | 4 | 1 | 221.34 |
7 | 6 | 1 | 218.71 |
8 | 3 | 1 | 213.14 |
7 | 4 | 1 | 209.53 |
7 | 5 | 3 | 203.96 |
8 | 5 | 1 | 198.60 |
7 | 5 | 1 | 184.75 |
Eigenvectors | Band 2 | Band 4 | Band 5 | Band 6 | Information |
---|---|---|---|---|---|
PC1 | −0.169 | −0.348 | −0.536 | −0.750 | 88.96% |
PC2 | −0.611 | −0.618 | −0.087 | 0.487 | 9.71% |
PC3 | −0.390 | −0.080 | 0.801 | −0.447 | 0.94% |
PC4 | −0.668 | 0.700 | −0.252 | 0.006 | 0.39% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Zheng, Y.; Chen, S.; Duan, X.; Zhou, Y.; Xu, X. Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China. Appl. Sci. 2023, 13, 9325. https://doi.org/10.3390/app13169325
Yang W, Zheng Y, Chen S, Duan X, Zhou Y, Xu X. Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China. Applied Sciences. 2023; 13(16):9325. https://doi.org/10.3390/app13169325
Chicago/Turabian StyleYang, Weiguang, Youye Zheng, Shizhong Chen, Xingxing Duan, Yu Zhou, and Xiaokuan Xu. 2023. "Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China" Applied Sciences 13, no. 16: 9325. https://doi.org/10.3390/app13169325
APA StyleYang, W., Zheng, Y., Chen, S., Duan, X., Zhou, Y., & Xu, X. (2023). Chromite-Bearing Peridotite Identification, Based on Spectral Analysis and Machine Learning: A Case Study of the Luobusa Area, Tibet, China. Applied Sciences, 13(16), 9325. https://doi.org/10.3390/app13169325