Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Material
2.2. Test Equipment and Methods
2.2.1. Swing Impact Test
2.2.2. Impending Fracturing Test
3. Results and Analysis
3.1. Swing Impact Test Results and Analysis
3.1.1. Influence of Material Type on Silique Shattering
3.1.2. Impact Velocity and Stress Surface Effects on Silique Shattering
3.1.3. Effect of Moisture Content on Shattering in Siliques
3.1.4. Influence of Silique Growth Position on Silique Shattering
3.1.5. The Effect of Supporting Role on Silique Shattering
3.2. Impending Fracturing Test Results and Analyses
3.2.1. Effect of Support Position on Mechanical Properties of Silique
3.2.2. Effect of Stress on the Mechanical Properties of Siliques
3.2.3. Effect of Loading Speed and Silique Growth Position on Mechanical Properties of Siliques
3.3. Influence of Morphological Characteristics of Rapeseed Silique on Silique Shattering
3.3.1. Correlation Analysis between Silique Morphological Characters with Silique Shattering
3.3.2. Grey Correlation Analysis between Silique Shattering with Silique Morphological Characters
4. Discussion
5. Conclusions
- (1)
- Based on the swing silique impact test method, according to the silique force state in the process of rapeseed harvesting and reeling, we carried out the silique crash impact test of the Ningza 1810, Zhenyou 8, and Fengyou 306 oilseed rape. Rapeseed varieties, the moisture content of siliques, silique growth position, collision materials, impact speed, force position, and other factors had a significant effect on silique shattering. Collision impact speed was lower than 1.5 m·s−1, and the effect of various factors on silique shattering was not significant. Rapeseed siliques with a higher moisture content were not easy to shatter, and the front side of the silique petal was more resistant to external impacts than the bonding surface of the petals. The impact resistance of the front side of rapeseed was two to four times that of the bonding surface of rapeseed petals. Rapeseed siliques growing at the bottom of the plant were superior to those at the top and center of the plant in terms of resistance to external impacts, the shattering rate of the top rapeseed silique was twice that of the bottom siliques, and when siliques were supported, they were more likely to shatter under external forces compared to unsupported ones.
- (2)
- Based on the universal material testing machine, an experimental study on the mechanical properties of rapeseed siliques was carried out using the impending fracturing method, and the silique support position, force position, loading speed, and silique growth position had significant effects on the mechanical properties of siliques. The maximum cracking force and flexural strength were higher when the fruit body of the silique was supported, the range of the maximum cracking force was 3.05 N to 4.16 N, and the bending strength range was 8.48 MPa to 11.57 MPa. The maximum cracking force and flexural strength of silique frontal surfaces were higher than those of the bonding surfaces, and the rapeseed silique at the middle of the branch was stronger than those at the top and bottom of the branch in terms of the maximum cracking force and flexural strength.
- (3)
- The correlation between the morphological characteristics of silique and the characteristics of silique shattering was tested by using the swing impact test method, based on Pearson’s correlation analysis and grey correlation analysis. The order of magnitude of the effect of morphological characteristics of rapeseed siliques on silique shattering performance was as follows: the angle of the silique stalk to the silique, diameter of stalk, thickness of pericarp, length of beak, thickness of silique, broad surface of silique, and length of silique.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Zhang, J.; Chen, Z. Picuture of Rape; Jiangsu Phoenix Science and Technology Press: Nanjing, China, 2020. [Google Scholar]
- Wang, H. New-demand oriented oilseed rape industry developing strategy. Chin. J. Oil Crop Sci. 2018, 40, 613–617. [Google Scholar]
- Wu, C.; Wang, J.; Liao, Q.; Wang, Z.; Wu, W. Current status and problems of rapeseed production. J. Chin. Agric. Mech. 2017, 38, 124–131. [Google Scholar]
- Ma, N.; Zhang, C.; Li, J.; Zhang, M.; Cheng, Y.; Li, G.; Zhang, S. Mechanical harvesting effects on seed yield loss, quality traits and profitability of winter oilseed rape (Brassica napus L.). J. Integr. Agric. 2012, 11, 1297–1304. [Google Scholar]
- Ostergaard, L.; Kempin, S.; Bies, D.; Klee, H.; Yanofsky, M. Pod shatter-resistant Brassica fruit produced by ectopic expression of the fruitfull gene. Plant Biotechnol. J. 2006, 4, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, J.; Xu, L.; Zhao, Z. Experiment on strength of rapeseed pod dehiscence based on impending fracturing method. Trans. Chin. Soc. Agric. Eng. 2012, 28, 111–115. [Google Scholar]
- Zhang, M.; Wu, C.; Jin, M.; Mu, S.; Liang, S.; Tang, Q. Effects of harvesting method and date on yield loss and seed quality of rapeseed. Oil Crop Sci. 2019, 4, 166–174. [Google Scholar]
- Jin, C.; Qi, Y.; Liu, G.; Yang, T.; Ni, Y. Mechanism analysis and parameter optimization of soybean combine harvester reel. Trans. Chin. Soc. Agric. Mach. 2023, 54, 104–113. [Google Scholar]
- Price, J.; Hobson, R.; Neals, M.; Bruce, D. Seed losses in commercial harvesting of oilseed rape. J. Agric. Eng. Res. 1996, 65, 183–191. [Google Scholar] [CrossRef]
- Pari, L.; Assirelli, A.; Suardi, A.; Civitarese, V.; Del, A.; Santangelo, E. Seed losses during the harvesting of oilseed rape (Brassica napus L.) at on-farm scale. J. Agric. Eng. 2013, XLIV, e126. [Google Scholar] [CrossRef]
- Bruce, D.; Farrent, J.; Morgan, C.; Child, R. Determining the oilseed rape pod strength needed to reduce seed loss due to pod shatter. Biosyst. Eng. 2002, 81, 179–184. [Google Scholar] [CrossRef]
- Stephenson, P.; Stacey, N.; Brueser, M.; Pullen, N.; Ostergaard, L. The power of model-to-crop translation illustrated by reducing seed loss from pod shatter in oilseed rape. Plant Reprod. 2019, 32, 331–340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, G.; Yang, Y.; Jin, M.; Jiang, T. Design and Parameter Optimization of Variable Speed Reel for Oilseed Rape Combine Harvester. Agriculture 2023, 13, 1521. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Y.; Qing, Y. Insertion trajectory analysis and experiment of rape combine harvester reel. J. Agric. Mech. Res. 2020, 10, 189–194. [Google Scholar]
- Kadkol, G.; Macmillan, R.; Burrow, R.; Halloran, G. Evaluation of Brassica genotypes for resistance to shatter. I: Development of a laboratory test. Euphytica 1984, 33, 63–73. [Google Scholar] [CrossRef]
- Pu, H.; Long, W.; Gao, J.; Hu, M. Silique shatter resistance and correlation analysis in brassica napus. Chin. J. Oil Crop Sci. 2013, 35, 469–475. [Google Scholar]
- Qiao, J.; Li, Y.; Zhao, Z.; Xu, L. Test and analysis on the silique shatter resistance of mature oilseed rape (Brassica napus L.). J. Agric. Mech. Res. 2015, 37, 204–207. [Google Scholar]
- Li, Y. Design and Analysis of Grain Combine Harvester; China Machine Press: Beijing, China, 2014. [Google Scholar]
- Qing, Y.; Li, Y.; Ma, Z.; Xu, L.; Yang, Y. Technology of 2-DOF collision testing for rape pod shatter resistance. Trans. Chin. Soc. Agric. Eng. 2019, 35, 33–40. [Google Scholar]
- Zhang, M.; Jin, M.; Wang, G.; Liang, S.; Wu, C. Design and test of double crank planar five-bar reel in rape windrower. Trans. Chin. Soc. Agric. Mach. 2022, 53, 44–51. [Google Scholar]
- Guan, Z.; Wu, C.; Wang, G.; Li, H.; Mu, S. Design of bidirectional electric driven side vertical cutter for rape combine harvester. Trans. Chin. Soc. Agric. Eng. 2019, 35, 1–8. [Google Scholar]
- Xu, L.; Li, Y. Modeling and experiment to threshing unit of stripper combine. Afr. J. Biotechnol. 2011, 10, 4106–4113. [Google Scholar]
- Li, H.; Wu, C.; Mu, S.; Guan, Z.; Jiang, T. Formation mechanism of laying angle of vertical rape windrower based on ANSYS-ADAMS. Trans. Chin. Soc. Agric. Eng. 2020, 36, 96–105. [Google Scholar]
- Li, P.; Liao, Q.; Li, L.; Han, C.; Huang, P.; Li, H. Design and experiment of the main device of 4SY-1.8 modified rape windrower. Trans. Chin. Soc. Agric. Eng. 2014, 45, 53–58. [Google Scholar]
- Jin, C.; Wu, C.; Jin, M.; Lu, Y.; Yuan, W.; Tang, Z. Design and experiment of 4SY-2 rape windrower. Trans. Chin. Soc. Agric. Mach. 2010, 41, 76–79. [Google Scholar]
- Liao, Q. Mechanization Technology of Rape Production; Science Press: Beijin, China, 2018. [Google Scholar]
- Lu, T.; Li, B.; Zhou, C.; Chen, D. New type of gear-cam modular reel. J. Mech. Transm. 2015, 39, 133–137. [Google Scholar]
- Tang, J.; Li, X.; Zhang, G.; Lu, W.; Ni, S.; Sun, Z.; Li, H.; Zhao, C.; Zhang, H.; Zhang, Q.; et al. An ANSYS/LS-DYNA simulation and experimental study of sectional hob type laver harvesting device. Agriculture 2023, 13, 361. [Google Scholar] [CrossRef]
- Jiménez-Armendáriz, J.; Jimenez-Martinez, M.; Varela-Soriano, J.; Santana-Diaz, A.; Perez-Santiago, R. Energy dissipation enhancement of thin-walled 6063 T5 aluminium tubes by combining a triggering mechanism and heat treatment. Metals. 2023, 13, 922. [Google Scholar] [CrossRef]
- Xu, X.; He, M. Experiment Design and Application of Design-Expert and SPSS; Science Press: Beijing, China, 2010. [Google Scholar]
- Wen, Y.; Fu, Y.; Tu, J.; Ma, C.; Shen, J.; Zhang, S. Research progress of rapeseed resistance angle. J. Plant Genet. Resour. 2009, 10, 140–145. [Google Scholar]
Morphological Characteristics of Oilseed Rape Silique | Zhenyou 8 | Ningza 1818 | Fengyou 306 | ||||||
---|---|---|---|---|---|---|---|---|---|
Maximum Value | Minimum Value | Average Value | Maximum Value | Minimum Value | Average Value | Maximum Value | Minimum Value | Average Value | |
Silique length (mm) | 65.0 | 42.5 | 55.2 | 75.0 | 58.0 | 68.6 | 75.0 | 60.5 | 66.6 |
Silique width (mm) | 5.76 | 4.60 | 5.23 | 5.86 | 4.14 | 4.83 | 5.52 | 4.48 | 5.01 |
Silique thickness (mm) | 3.62 | 2.92 | 3.27 | 3.90 | 3.04 | 3.37 | 3.84 | 2.48 | 3.24 |
Beak length (mm) | 13.0 | 9.0 | 10.9 | 20.0 | 14.0 | 15.9 | 18.0 | 13.0 | 15.9 |
Pericarp thickness (mm) | 0.34 | 0.16 | 0.28 | 0.36 | 0.24 | 0.30 | 0.34 | 0.22 | 0.28 |
Impact Velocity/m·s−1 | Ningza 1818 | Zhenyou 8 | ||
---|---|---|---|---|
Right Ahead | Bonding Surface | Right Ahead | Bonding Surface | |
1.5 | 0% | 5% | 0% | 0% |
2.5 | 10% | 30% | 5% | 15% |
3.5 | 15% | 50% | 5% | 40% |
4.5 | 30% | 65% | 15% | 60% |
Level | Moisture Content of Silique/% | Moisture Content of Rapeseed/% | Silique Shattering Rate/% |
---|---|---|---|
1 | 20.61 | 23.85 | 25 |
2 | 15.83 | 17.29 | 45 |
3 | 9.24 | 8.06 | 75 |
Different Distribution Locations of Silique | |||
---|---|---|---|
Top of Main Branch | Middle of Main Branch | Bottom of Main Branch | |
Shattering rate/% | 50 | 40 | 25 |
Unsupported | Support Position | ||
---|---|---|---|
Horizon 0 mm | Horizon 5 mm | Horizon 10 mm | |
40% | 100% | 90% | 75% |
Serial Number | Carpopodium and Beak | Carpopodiums and Petals | Silique Body Support | |||
---|---|---|---|---|---|---|
Maximum Cracking Force/N | Flexural Strength/MPa | Maximum Cracking Force/N | Flexural Strength/MPa | Maximum Cracking Force/N | Flexural Strength/MPa | |
1 | 1.45 | 6.05 | 2.14 | 8.19 | 3.12 | 8.61 |
2 | 1.11 | 4.62 | 2.18 | 8.33 | 3.41 | 9.45 |
3 | 1.44 | 6.02 | 1.90 | 7.24 | 3.48 | 9.45 |
4 | 1.57 | 6.54 | 2.4 | 9.16 | 3.05 | 8.48 |
5 | 1.73 | 7.21 | 2.05 | 7.83 | 4.16 | 11.57 |
Average value | 1.46 | 6.09 | 2.13 | 8.15 | 3.44 | 9.51 |
Zhenyou 8 | Ningza 1818 | Fengyou 306 | ||||
---|---|---|---|---|---|---|
Average Value of Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | Average Value of Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | Average Value of Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | |
Petal front | 1.68 | 4.66 | 1.51 | 5.81 | 1.33 | 4.63 |
Petal bonding surface | 1.03 | 3.82 | 0.72 | 3.44 | 0.76 | 3.54 |
Average value | 1.35 | 4.24 | 1.12 | 4.62 | 1.04 | 4.09 |
Source of Variation | SS | f | MS | F Value | p Value |
---|---|---|---|---|---|
Rapeseed varieties | 1.055 | 2 | 0.528 | 21.668 | <0.001 *** |
Silique different stress surfaces | 6.687 | 1 | 6.687 | 274.563 | <0.001 *** |
Rapeseed varieties × different stress surfaces | 0.145 | 2 | 0.072 | 2.969 | 0.06 |
Error | 1.315 | 4 | 0.024 | ||
Total variation | 9.202 | 9 |
Source of Variation | SS | df | MS | F Value | p Value |
---|---|---|---|---|---|
Rapeseed varieties | 3.110 | 2 | 1.555 | 4.798 | 0.012 |
Silique different stress surfaces | 30.774 | 1 | 30.774 | 94.976 | <0.001 |
Rapeseed varieties×Different stress surfaces | 6.731 | 2 | 3.366 | 10.387 | <0.001 |
Error | 17.497 | 54 | 0.324 | ||
Total variation | 58.111 | 59 |
Silique at the Top of Plant | Silique at the Middle of Plant | Silique at the Bottom of Plant | ||||
---|---|---|---|---|---|---|
Average Value of the Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | Average Value of Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | Average Value of Maximum Cracking Force/N | Average Value of Flexural Strength/MPa | |
Loading speed 5 mm·min−1 | 1.85 | 5.15 | 1.91 | 5.32 | 1.86 | 5.16 |
Loading speed 15 mm·min−1 | 2.21 | 6.14 | 2.32 | 6.45 | 2.18 | 6.06 |
Loading speed 25 mm·min−1 | 2.07 | 5.75 | 2.15 | 5.98 | 1.96 | 5.46 |
Average value | 2.02 | 5.63 | 2.11 | 5.86 | 2.00 | 5.57 |
Source of Variation | Type III Sum of Squares | Degree of Freedom | Mean Square | F | Significance |
---|---|---|---|---|---|
Correction model | 0.891 | 8 | 0.111 | 14.001 | <0.001 |
Intercept | 135.296 | 1 | 135.296 | 17,007.528 | <0.001 |
Silique distribution location | 0.095 | 2 | 0.047 | 5.951 | 0.008 |
Loading speed | 0.776 | 2 | 0.388 | 48.785 | <0.001 |
Silique distribution location × Loading speed | 0.019 | 4 | 0.005 | 0.610 | 0.625 |
Error | 0.191 | 24 | 0.008 | ||
Total | 139.453 | 33 | |||
Correction total | 1.082 | 32 |
Source of Variation | Type III Sum of Squares | Degree of Freedom | Mean Square | F | Significance |
---|---|---|---|---|---|
Correction model | 6.907 | 8 | 0.863 | 14.050 | <0.001 |
Intercept | 1045.86 | 1 | 1045.857 | 17,020.024 | <0.001 |
Silique distribution location | 0.739 | 2 | 0.370 | 6.017 | 0.008 |
Loading speed | 6.012 | 2 | 3.006 | 48.922 | <0.001 |
Silique distribution location × Loading speed | 0.149 | 4 | 0.037 | 0.608 | 0.661 |
Error | 1.475 | 24 | 0.061 | ||
Total | 1078.045 | 33 | |||
Correction total | 8.382 | 32 |
Silique Characters | Range of Variability | Average Value | Standard Deviation | Coefficient of Variation/% | Skewness Coefficient | Kurtosis Coefficient |
---|---|---|---|---|---|---|
Silique length/mm | 45~76 | 66.122 | 6.3491 | 9.60 | −0.994 | 1.184 |
Beak length/mm | 13~20 | 15.522 | 1.4318 | 9.22 | 0.659 | 1.169 |
Width/mm | 3.94~5.96 | 4.8471 | 0.42494 | 8.77 | 0.333 | 0.657 |
Thickness/mm | 2.96~4.26 | 3.3467 | 0.29354 | 8.77 | 1.091 | 0.718 |
Pericarp thickness/mm | 0.22~0.36 | 0.2947 | 0.03507 | 11.90 | 0.048 | −0.836 |
Diameter of carpopodium/mm | 0.56~0.88 | 0.6998 | 0.06469 | 9.24 | 0.393 | 0.558 |
Angle/° | 0~29 | 10.489 | 8.2697 | 78.84 | 0.41 | −0.833 |
Characteristic | Length/mm | Beak Length/mm | Width/mm | Thickness/mm | Pericarp Thickness/mm | Diameter of Carpopodium/mm | Angle | Shattering |
---|---|---|---|---|---|---|---|---|
Silique length (mm) | 1 | |||||||
Beak length (mm) | 0.296 ** | 1 | ||||||
Silique width (mm) | 0.346 ** | −0.135 | 1 | |||||
Silique thickness (mm) | −0.024 | 0.220 * | 0.377 ** | 1 | ||||
Petal thickness (mm) | −0.071 | 0.186 | 0.244 * | 0.784 ** | 1 | |||
Diameter of carpopodium (mm) | 0.232 * | 0.135 | 0.576 ** | 0.587 ** | 0.456 ** | 1 | ||
Angle between carpopodium and silique | 0.139 | 0.1 | 0.092 | −0.038 | −0.013 | 0.168 | 1 | |
Shattering | 0.07 | 0.226 * | 0.15 | 0.197 | 0.19 | 0.594 ** | −0.068 | 1 |
Silique Morphological Characteristics | Correlation | Rank |
---|---|---|
The angle of the silique stalk to the silique (°) | 0.586 | 1 |
Diameter of the silique stalk (mm) | 0.552 | 2 |
Thickness of the pericarp (mm) | 0.546 | 3 |
Length of the beak (mm) | 0.545 | 4 |
Thickness of the silique (mm) | 0.544 | 5 |
Width of the silique (mm) | 0.543 | 6 |
Length of the silique (mm) | 0.542 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Li, G.; Yang, Y.; Jin, M.; Wang, G. Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique. Appl. Sci. 2023, 13, 9369. https://doi.org/10.3390/app13169369
Zhang M, Li G, Yang Y, Jin M, Wang G. Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique. Applied Sciences. 2023; 13(16):9369. https://doi.org/10.3390/app13169369
Chicago/Turabian StyleZhang, Min, Gang Li, Yao Yang, Mei Jin, and Gang Wang. 2023. "Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique" Applied Sciences 13, no. 16: 9369. https://doi.org/10.3390/app13169369
APA StyleZhang, M., Li, G., Yang, Y., Jin, M., & Wang, G. (2023). Test Trials and Analysis of Pod-Shattering Characteristics of Harvested Rapeseed Silique. Applied Sciences, 13(16), 9369. https://doi.org/10.3390/app13169369