Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks
Abstract
:1. Introduction
2. Methods
2.1. Wave Mode Decomposition Theory
2.2. Network Structure of SADCGANs
2.3. Training Dataset and Hyperparameters
3. Numerical Experiments
3.1. Simple Isotropic Elastic Model
3.2. Hess Isotropic Elastic Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, Q.Z.; Guo, C.F.; Zhao, Q.; Gong, X.F.; Wang, C.X.; Li, X.Y. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 2017, 82, S111–S127. [Google Scholar] [CrossRef]
- Wang, C.L.; Cheng, J.B.; Arntsen, B. Scalar and vector imaging based on wave mode decoupling for elastic reverse time migration in isotropic and transversely isotropic media. Geophysics 2016, 81, S383–S398. [Google Scholar] [CrossRef]
- Wang, W.L.; Hua, B.L.; McMechan, G.A.; Duquet, B. P- and S-decomposition in anisotropic media with localized low-rank approximations. Geophysics 2018, 83, C13–C26. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Chang, X.; Wang, Y.B.; Yao, Z.X. Amplitude-preserving scalar PP and PS imaging condition for elastic reverse time migration based on a wavefield decoupling method. Geophysics 2019, 84, S113–S125. [Google Scholar] [CrossRef]
- Yan, J.; Sava, P. Isotropic angle-domain elastic reverse-time migration. Geophysics 2008, 73, S229–S239. [Google Scholar] [CrossRef]
- Yan, R.; Xie, X.B. An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction. Geophysics 2012, 77, S105–S115. [Google Scholar] [CrossRef]
- Dellinger, J.; Etgen, J. Wave-field separation in two-dimensional anisotropic media. Geophysics 1990, 55, 914–919. [Google Scholar] [CrossRef]
- Sun, R.; McMechan, G.A. Scalar reverse-time depth migration of prestack elastic seismic data. Geophysics 2001, 66, 1519–1527. [Google Scholar] [CrossRef]
- Sun, R.; McMechan, G.A.; Chuang, H.H. Amplitude balancing in separating P- and S-waves in 2D and 3D elastic seismic data. Geophysics 2011, 76, S103–S113. [Google Scholar] [CrossRef]
- Duan, Y.; Sava, P. Scalar imaging condition for elastic reverse time migration. Geophysics 2015, 80, S127–S136. [Google Scholar] [CrossRef]
- Du, Q.Z.; Zhu, Y.T.; Ba, J. Polarity reversal correction for elastic reverse time migration. Geophysics 2012, 77, S31–S41. [Google Scholar] [CrossRef]
- Ma, D.T.; Zhu, G.M. P- and S-wave separated elastic wave equation numerical modeling. Oil Geophys. Prospect. 2003, 38, 482–486. (In Chinese) [Google Scholar]
- Li, Z.C.; Zhang, H.; Liu, Q.M.; Han, W.G. Numeric simulation of elastic wavefield separation by staggering grid high-order finite-difference algorithm. Oil Geophys. Prospect. 2007, 42, 510–515. (In Chinese) [Google Scholar]
- Gu, B.L.; Li, Z.Y.; Ma, X.N.; Liang, G.H. Multi-component elastic reverse time migration based on the P- and S-wave separated velocity-stress equations. J. Appl. Geophys. 2015, 112, 62–78. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, W.; Wang, Y.H. Seismic elastic RTM with vector-wavefield decomposition. J. Geophys. Eng. 2019, 16, 509–524. [Google Scholar] [CrossRef]
- Zhong, Y.; Gu, H.M.; Liu, Y.T.; Mao, Q.H. Elastic least-squares reverse time migration based on decoupled wave equations. Geophysics 2021, 86, S371–S386. [Google Scholar] [CrossRef]
- Liu, W.; You, J.C.; Cao, J.X.; Wang, H.B. A fast and accurate elastic reverse-time migration method based on decoupled elastic wave equations. J. Appl. Geophys. 2023, 214, 105061. [Google Scholar] [CrossRef]
- Wang, W.L.; McMechan, G.A.; Zhang, Q.S. Comparison of two algorithms for isotropic elastic P and S vector decomposition. Geophysics 2015, 80, T147–T160. [Google Scholar] [CrossRef]
- Zhang, Q.S.; McMechan, G.A. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 2010, 75, D13–D26. [Google Scholar] [CrossRef]
- Ren, Z.M.; Liu, Y. A hierarchical elastic full-waveform inversion scheme based on wavefield separation and the multistep-length approach. Geophysics 2016, 81, R99–R123. [Google Scholar] [CrossRef]
- Ji, K.; Zhu, C.B.; Sabegh, S.Y.; Lu, J.Q.; Ren, Y.F.; Wen, R.Z. Site classification using deep-learning-based image recognition techniques. Earthq. Eng. Struct. Dyn. 2022, 52, 2323–2338. [Google Scholar] [CrossRef]
- Wu, X.M.; Liang, L.M.; Shi, Y.Z.; Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for 3D seismic fault segmentation. Geophysics 2019, 84, IM35–IM45. [Google Scholar] [CrossRef]
- Jing, J.K.; Yan, Z.; Zhang, Z.; Gu, H.M.; Han, B.K. Fault detection using a convolutional neural network trained with point-spread function-convolution-based samples. Geophysics 2023, 88, IM1–IM14. [Google Scholar] [CrossRef]
- Duan, Y.T.; Zheng, X.D.; Hu, L.L.; Sun, L.P. Seismic facies analysis based on deep convolutional embedded clustering. Geophysics 2019, 84, IM87–IM97. [Google Scholar] [CrossRef]
- Puzyrev, V.; Elders, C. Unsupervised seismic facies classification using deep convolutional autoencoder. Geophysics 2022, 87, IM125–IM132. [Google Scholar] [CrossRef]
- Yu, S.W.; Ma, J.W.; Wang, W.L. Deep learning for denoising. Geophysics 2019, 84, V333–V350. [Google Scholar] [CrossRef]
- Pham, N.; Li, W.C. Physics-constrained deep learning for ground roll attenuation. Geophysics 2022, 87, V15–V27. [Google Scholar] [CrossRef]
- Duan, X.D.; Zhang, J. Multitrace first-break picking using an integrated seismic and machine learning method. Geophysics 2020, 85, WA269–WA277. [Google Scholar] [CrossRef]
- Liao, X.F.; Cao, J.X.; Hu, J.T.; You, J.C.; Jiang, X.D.; Liu, Z.G. First arrival time identification using transfer learning with continuous wavelet transform feature images. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2002–2006. [Google Scholar] [CrossRef]
- Yang, F.S.; Ma, J.W. Deep-learning inversion: A next-generation seismic velocity model building method. Geophysics 2019, 84, R583–R599. [Google Scholar] [CrossRef]
- Simon, J.; Ouellet, J.F.; Gloaguen, E.; Khurjekar, I. Hierarchical transfer learning for deep learning velocity model building. Geophysics 2023, 88, R79–R93. [Google Scholar] [CrossRef]
- Kong, F.T.; Picetti, F.; Lipari, V.; Bestagini, P. Deep prior-based unsupervised reconstruction of irregularly sampled seismic data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 7501305. [Google Scholar] [CrossRef]
- Greiner, T.A.L.; Lie, J.R.; Kolbjørnsen, O.; Evensen, A.K.; Nilsen, E.H.; Zhao, H.; Demyanov, V.; Gelius, L.J. Unsupervised deep learning with higher-order total-variation regularization for multidimensional seismic data reconstruction. Geophysics 2022, 87, V59–V73. [Google Scholar] [CrossRef]
- Wei, Y.W.; Li, Y.Y.; Zong, J.J.; Yang, J.Z.; Fang, J.W.; Fu, H.H. Multi-task learning based P/S wave separation and reverse time migration for VSP. SEG Tech. Program Expand. Abstr. 2020, 1671–1675. [Google Scholar] [CrossRef]
- Wang, W.L.; Ma, J.W. PS decomposition of isotropic elastic wavefields using CNN-learned filters. In Proceedings of the 81st Annual Conference & Exhibition, London, UK, 3–6 June 2019; pp. 1–5. [Google Scholar]
- Wang, W.L.; Ma, J.W.; McMechan, G.A. CNN-Tuned Spatial Filters for P- and S-Wave Decomposition and Applications in Elastic imaging. arXiv 2021, arXiv:2112.10927. [Google Scholar]
- Kaur, H.; Fomel, S.; Pham, N. Elastic wave-mode separation in heterogeneous anisotropic media using deep learning. SEG Tech. Program Expand. Abstr. 2019, 2654–2658. [Google Scholar] [CrossRef]
- Kaur, H.; Fomel, S.; Pham, N. A fast algorithm for elastic wave-mode separation using deep learning with generative adversarial networks (GANs). J. Geophys. Res. Solid Earth 2021, 126, e2020JB021123. [Google Scholar] [CrossRef]
- Xiong, Y.N.; Wang, T.F.; Xu, W.; Cheng, J.B. P-S Separation from multi-component seismic data using deep convolutional neural networks. In Proceedings of the 82st Annual Conference & Exhibition, Online, 8–11 December 2020; pp. 1–5. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Goodfellow, I.; Abadie, J.P.; Mirza, M.; Xu, B.; Farley, D.W.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 3–8 December 2014; pp. 2672–2680. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.H.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Zhang, H.; Goodfellow, I.; Metaxas, D.; Odena, A. Self-attention generative adversarial networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 7354–7363. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved Training of Wasserstein GANs. arXiv 2017, arXiv:1704.00028. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Goodfellow, I. Nips 2016 Tutorial: Generative Adversarial Networks. arXiv 2016, arXiv:1701.00160. [Google Scholar]
- Lotter, W.; Kreiman, G.; Cox, D. Unsupervised Learning of Visual Structure Using Predictive Generative Networks. arXiv 2015, arXiv:1511.06380. [Google Scholar]
Models | Simple Model () | Simple Model () | Hess Model () | Hess Model () |
---|---|---|---|---|
(SSIM) | 0.999 | 0.985 | 0.997 | 0.978 |
) | 0.993 | 0.964 | 0.990 | 0.955 |
(SSIM) | 0.998 | 0.981 | 0.992 | 0.976 |
) | 0.990 | 0.963 | 0.984 | 0.953 |
(SSIM) | 0.989 | 0.978 | 0.983 | 0.959 |
) | 0.976 | 0.953 | 0.964 | 0.940 |
(SSIM) | 0.983 | 0.970 | 0.976 | 0.954 |
) | 0.965 | 0.949 | 0.952 | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Cao, J.; You, J.; Wang, H. Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks. Appl. Sci. 2023, 13, 9440. https://doi.org/10.3390/app13169440
Liu W, Cao J, You J, Wang H. Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks. Applied Sciences. 2023; 13(16):9440. https://doi.org/10.3390/app13169440
Chicago/Turabian StyleLiu, Wei, Junxing Cao, Jiachun You, and Haibo Wang. 2023. "Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks" Applied Sciences 13, no. 16: 9440. https://doi.org/10.3390/app13169440
APA StyleLiu, W., Cao, J., You, J., & Wang, H. (2023). Vector Decomposition of Elastic Seismic Wavefields Using Self-Attention Deep Convolutional Generative Adversarial Networks. Applied Sciences, 13(16), 9440. https://doi.org/10.3390/app13169440