Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods
Abstract
:1. Introduction
2. Model of the Engine Duct System
2.1. Establishment of the Duct System Model
2.2. The Fixed End
2.3. Tie Rod
2.4. Ball Joint
3. Numerical Simulation
3.1. Mesh
3.2. Material Properties
3.3. Boundary Condition
3.4. Numerical Calculation
3.4.1. Research Methods
3.4.2. Variable Temperature Conditions
3.4.3. Variable Pressure Conditions
4. Redesign
4.1. Redesign Solution
4.2. Results and Discussion
4.2.1. Variable Temperature Conditions
4.2.2. Variable Pressure Conditions
4.3. Comparison and Analysis
5. Conclusions
- (1)
- Under atmospheric pressure conditions, as the temperature increased from 315.56 °C to 537.78 °C, the maximum stress of the duct system increased from 375.62 MPa to 771.25 MPa. When the temperature was maintained at 537.78 °C, the maximum stress of the duct system fluctuated between 754 MPa and 776.34 MPa as the pressure changed from 1 MPa to 2 MPa. The stress of the duct system varied significantly with temperature.
- (2)
- Owing to the limited rotational freedom of the conventional spherical bearing at the tie rod end, a high level of restraint exists between the tie rod and the duct system, particularly at their contact position. In the case of the investigated air duct system, when the temperature reached 426.67 °C, the stress reached 590.61 MPa, which exceeded the yield limit of 565.1 MPa. However, the high temperature experienced in the engine air duct system often exceeds this limit, and the duct stress will be worse when high pressure is exerted.
- (3)
- The problem of limited tie rod freedom is effectively addressed by the proposed sleeve-type tie rod as it allows for the release of axial displacement of the duct system at the tie rod position. Particularly during instances of significant deformation in high-temperature ducts, it can mitigate the additional force exerted by the tie rod on the duct system. Under the worst-case scenario of 537.78 °C and 2 MPa as an example, the sleeve-type tie rod proposed in this paper can reduce the stress at the tie rod connection from 757.61 MPa to less than 25 MPa, a reduction of more than 96%. The original tie rod tearing problem is solved, and the maximum stress of the whole duct system is reduced to 459.25 MPa, which is below the yield strength. Expanding the degrees of freedom while avoiding excessive constraints remains the best strategy for mitigating thermal stresses, and this principle is equally applicable in all cases.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.; Yang, L.; Xu, T. Dynamic Analysis of the Rod-Fastened Rotor Considering the Characteristics of Circumferential Tie Rods. Appl. Sci. 2021, 11, 3829. [Google Scholar] [CrossRef]
- Kai, C.; Xu, J. Mechanical Properties of Sheet Pile Cofferdam during Adjacent Open Cut Tunnel Construction near Lake Bottom. Appl. Sci. 2023, 13, 6191. [Google Scholar] [CrossRef]
- Camassa, D.; Castellano, A.; Fraddosio, A.; Miglionico, G.; Piccioni, M.D. Dynamic Identification of Tensile Force in Tie-Rods by Interferometric Radar Measurements. Appl. Sci. 2021, 11, 3687. [Google Scholar] [CrossRef]
- Duvnjak, I.; Ereiz, S.; Damjanović, D.; Bartolac, M. Determination of Axial Force in Tie Rods of Historical Buildings Using the Model-Updating Technique. Appl. Sci. 2020, 10, 6036. [Google Scholar] [CrossRef]
- Shi, H. Study on Safety Design and Leakage Detection Technology of the Aircraft Pneumatic Duct System. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2013. [Google Scholar]
- Winklberger, M.; Heftberger, P.; Sattlecker, M.; Schagerl, M. Fatigue strength and weight optimization of threaded connections in tie-rods for aircraft structures. Procedia Eng. 2018, 213, 374–382. [Google Scholar] [CrossRef]
- Tang, M.; Wang, Q.; He, G.; Liu, R.P. Based on Bionic Optimization Design and Strength Analysis of The Tie Rod of Aircraft Landing Gear. IOP Conf. Ser. Mater. Sci. Eng. 2020, 816, 012007. [Google Scholar] [CrossRef]
- Falco, A.D.; Resta, C.; Sevieri, G. Sensitivity analysis of frequency-based tie-rod axial load evaluation methods. Eng. Struct. 2021, 229, 111568. [Google Scholar] [CrossRef]
- Ereiz, S.; Duvnjak, I.; Damjanović, D.; Bartolac, M. Analysis of Seismic Action on the Tie Rod System in Historic Buildings Using Finite Element Model Updating. Buildings 2021, 11, 453. [Google Scholar] [CrossRef]
- Dai, X.; Feng, S.; Zhu, J.; Tian, J.; Zhou, J.; Yu, L. Analysis of Assembly Deformation of a Detachable High Speed Rotor Tie Rod. In Proceedings of the 2021 IEEE International Conference on Mechatronics and Automation (ICMA), Takamatsu, Kagawa, Japan, 8 August 2021. [Google Scholar] [CrossRef]
- Kim, J.K.; Kim, Y.J.; Yang, W.H.; Park, Y.C.; Lee, K. Structural design of an outer tie rod for a passenger car. Int. J. Auto. Tech-KOR 2011, 12, 375–381. [Google Scholar] [CrossRef]
- Mungi, S.; Navthar, R.R. Performance Optimization of Tie rod using FEA. Int. J. Eng. Res. Dev. 2015, 11, 27–33. [Google Scholar]
- Liu, X.; Yuan, Q.; Ou, W.H. Strength Analysis and Design Improvement of the Tie Rods in Circumferentially Distributed Rod Fastening Rotors. J. Xi’an Jiaotong Univ. 2016, 50, 104–110. [Google Scholar] [CrossRef]
- Xu, H.; Yang, L.; Xu, T.; Wu, Y. Effect of Detuning of Clamping Force of Tie Rods on Dynamic Performance of Rod-Fastened Jeffcott Rotor. Math. Probl. Eng. 2021, 2021, 6645978. [Google Scholar] [CrossRef]
- Brennan, M.J.; Day, M.J.; Randall, R.J. An Experimental Investigation into the Semi-Active and Active Control of Longitudinal Vibrations in a Large Tie-Rod Structure. J. Vib. Acoust. 1998, 120, 1–12. [Google Scholar] [CrossRef]
- Duan, W.; Joshi, S. Structural behavior of large-scale triangular and trapezoidal threaded steel tie rods in assembly using finite element analysis. Eng. Fail. Anal. 2013, 34, 150–165. [Google Scholar] [CrossRef]
- Duan, W.; Joshi, S. Failure analysis of threaded connections in large-scale steel tie rods. Eng. Fail. Anal. 2011, 18, 2008–2018. [Google Scholar] [CrossRef]
- Kim, Y.; An, K.; Lee, K.; Park, Y. Structural Optimization of an Outer Tie Rod Using RSM and Kriging. J. Korea Acad. Coop. Soc. 2015, 16, 27–34. [Google Scholar] [CrossRef]
- Waybase, P.S.; Takate, P.S.; Vaidya, R.; Patil, P.D. A Review on Weight Optimization of Tie Rod. J. Emerg. Technol. Innov. Res. 2019, 6, 155–156. [Google Scholar]
- Godase, A.J.; Kulkami, P.P.; Katekar, S. Probabilistic Design for Strength Analysis of Tie Rod Subjected to Tensile, Compressive, and Shear Load by Using Finite Element Methods. In Techno-Societal 2018; Springer: Pandharpur, India, 2020; pp. 109–119. [Google Scholar] [CrossRef]
- Du, H.; He, Y.; Yang, Y.; Wang, Y. Study on tie rod force characteristics in electro-hydraulic power steering system for heavy vehicle. Proc. Int. Mech. Eng. D J. Aut. 2020, 235, 564–579. [Google Scholar] [CrossRef]
- Muhammad, A.; Ali, M.; Shanono, I.H. Finite Element Analysis of a connecting rod in ANSYS: An overview. IOP Conf. Ser. Mater. Sci. Eng. 2020, 736, 022119. [Google Scholar] [CrossRef]
- Bhirad, S.S. Failure Analysis and Optimization of the Tie Rod Using FEA. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 2781–2786. [Google Scholar] [CrossRef]
- Kim, Y.; Park, S.; Lee, K.; Park, Y. Lightweight Design of an Outer Tie Rod Using Meta-Model Based Optimization Technique. J. Korea Acad. Coop. Soc. 2015, 16, 7754–7760. [Google Scholar] [CrossRef]
- Navale, P.; Katekar, S.D. Validation of Natural Frequency for Tie Rod of a Steering System using Finite Element Analysis and Experimental Methods. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 139–154. [Google Scholar] [CrossRef]
- Wayal, S.U.; Katratwar, T. Transient Dynamic Analysis for Optimization of Tie Rod Using FEM. Int. J. Sci. Res. Publ. 2016, 6, 263–267. [Google Scholar]
- Zhang, Z.Y.; Shen, R.Y.; Wang, Q. The modal analysis of the liquid filled pipe system. Acta Mech. Solida Sin. 2001, 22, 143–149. [Google Scholar]
- Jiao, Z.X.; Hua, Q.; Yu, K. Frequency domain analysis of vibrations in liquid filled piping systems. In Proceedings of the ASME 1999 International Mechanical Engineering Congress and Exposition. Fluid Power Systems and Technology, Nashville, TN, USA, 14–19 November 1999; pp. 25–31. [Google Scholar] [CrossRef]
- Martucci, A.; Marchese, G.; Bassini, E.; Lombardi, M. Effects of Stress-Relieving Temperature on Residual Stresses, Microstructure and Mechanical Behaviour of Inconel 625 Processed by PBF-LB/M. Metals 2023, 13, 796. [Google Scholar] [CrossRef]
- Tian, Z.; Zhang, C.; Wang, D.; Liu, W.Y.; Fang, X.; Wellmann, D.; Zhao, Y.; Tian, Y. A Review on Laser Powder Bed Fusion of Inconel 625 Nickel-Based Alloy. Appl. Sci. 2020, 10, 81. [Google Scholar] [CrossRef]
- Anandrao, K.S.; Gupta, R.K.; Ramchandran, P.; Rao, G.V. Non-linear static analysis of uniform slender functionally graded material beams using finite element method. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2011, 81A, 71–78. [Google Scholar] [CrossRef]
- Sayatfar, A.; Khedmati, M.R.; Rigo, P. Residual ultimate strength of cracked steel unstiffened and stiffened plates under longitudinal compression. Thin-Walled Struct. 2014, 84, 378–392. [Google Scholar] [CrossRef]
- Sayman, O.; Ozen, M.; Ozel, A.; Demir, T.; Korkmaz, B. A non-linear elastic-plastic stress analysis in a ductile double-lap joint. Sci. Eng. Compos. Mater. 2013, 20, 163–168. [Google Scholar] [CrossRef]
- Mechel, F.P. Modal-analysis in curved and ring-shaped ducts. Part I: Curved Ducts. Acta Acust. United Acust. 2008, 94, 173–206. [Google Scholar] [CrossRef]
- Mondal, R.N.; Huda, M.A.; Tarafder, D. Steady and unsteady solutions of the thermal flows through a curved duct. Khulna Univ. Stud. 2007, 8, 151–160. [Google Scholar] [CrossRef]
- Hye, M.A.; Rahman, M.M. A Numerical Study on Non-Isothermal Flow Through a Rotating Curved Duct with Square Cross Section. Int. J. Appl. Sci. Eng. 2014, 12, 241–256. [Google Scholar]
- Wahiduzzaman, M.; Alam, M.M.; Ferdows, M.; Sivasankaran, S. Non-isothermal flow through a rotating straight duct with wide range of rotational and pressure driven parameters. Comp. Math. Math. Phys. 2013, 53, 1571–1589. [Google Scholar] [CrossRef]
- Ji, D.; Hu, X.; Zhao, Z.; Jia, X.M.; Hu, X.; Song, Y. Stress Rupture Life Prediction Method for Notched Specimens Based on Minimum Average von Mises Equivalent Stress. Metals 2022, 12, 68. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y.; Yu, L.; Ji, K.; Liu, X.; Lou, Y. Failure Modeling for QP980 Steel by a Shear Ductile Fracture Criterion. Metals 2022, 12, 452. [Google Scholar] [CrossRef]
- Choi, B.; Moon, I.Y.; Oh, Y.S.; Kang, S.; Kim, S.; Jung, J.; Kim, J.; Kim, D.; Lee, H.W. Die Design for Extrusion Process of Titanium Seamless Tube Using Finite Element Analysis. Metals 2021, 11, 1338. [Google Scholar] [CrossRef]
- Živković, J.M.; Dunić, V.; Milovanović, V.; Pavlović, A.; Zivkovic, M.M. A Modified Phase-Field Damage Model for Metal Plasticity at Finite Strains: Numerical Development and Experimental Validation. Metals 2021, 11, 47. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Wang, J.; Hu, M.; Peng, Y. Lifetime Assessment for Multiaxial High-Cycle Fatigue Using Twin-Shear Unified Yield Criteria. Metals 2021, 11, 1178. [Google Scholar] [CrossRef]
- Niesłony, A. A critical analysis of the Mises stress criterion used in frequency domain fatigue life prediction. Frat. Integrita Strutt. 2016, 38, 177–183. [Google Scholar] [CrossRef]
- Lyu, Y.; Lian, W.; Sun, Z.; Li, W.; Duan, Z.H.; Chen, R.; Yu, W.; Shao, S. Failure Analysis of Abnormal Bulging and Cracking for High-Pressure Steam Pipe. J. Mater. Eng. Perform. 2022, 31, 7277–7289. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Z.; Shi, L.; Liu, S.M. Determination of Contact Stiffness of Rod-Fastened Rotors Based on Modal Test and Finite Element Analysis. J. Eng. Gas Turbines Power 2010, 132, 094501. [Google Scholar] [CrossRef]
Direction | Translation Tx | Translation Ty | Translation Tz | Rotation Rx | Rotation Ry | Rotation Rz |
---|---|---|---|---|---|---|
Freedom | stiffness | stiffness | stiffness | 0–5° | arbitrary | 0–5° |
Temperature (°C) | Yield Strength (MPa) | Young’s Modulus (MPa) | Poisson’s Ratio | Thermal Expansion Coefficient (×10−6/°C) | Density (kg/m3) |
---|---|---|---|---|---|
21.11 | 655.0 | 205,471 | 0.28 | 12.744 | 8442.37 |
37.78 | 654.8 | 199,955 | 0.28 | 12.751 | 8442.37 |
93.33 | 653.8 | 190,992 | 0.28 | 12.751 | 8442.37 |
148.89 | 652.2 | 183,407 | 0.2817 | 12.830 | 8442.37 |
204.44 | 649.7 | 179,960 | 0.2842 | 12.971 | 8442.37 |
260.00 | 645.8 | 176,512 | 0.2864 | 13.111 | 8442.37 |
315.56 | 639.8 | 173,754 | 0.289 | 13.284 | 8442.37 |
371.11 | 630.5 | 171,686 | 0.2922 | 13.471 | 8442.37 |
426.67 | 616.4 | 170,307 | 0.2956 | 13.660 | 8442.37 |
482.22 | 595.4 | 168,238 | 0.2998 | 13.846 | 8442.37 |
537.78 | 565.1 | 166,859 | 0.3049 | 14.065 | 8442.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Feng, K.; Yuan, J.; Wang, R.; Yang, K.; Zheng, R.; Wang, Y. Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods. Appl. Sci. 2023, 13, 9519. https://doi.org/10.3390/app13179519
Li X, Feng K, Yuan J, Wang R, Yang K, Zheng R, Wang Y. Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods. Applied Sciences. 2023; 13(17):9519. https://doi.org/10.3390/app13179519
Chicago/Turabian StyleLi, Xinghai, Kai Feng, Jie Yuan, Rui Wang, Kaijie Yang, Rentong Zheng, and Yansong Wang. 2023. "Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods" Applied Sciences 13, no. 17: 9519. https://doi.org/10.3390/app13179519
APA StyleLi, X., Feng, K., Yuan, J., Wang, R., Yang, K., Zheng, R., & Wang, Y. (2023). Thermal Stress Compensation for an Aircraft Engine Duct System Based on a Structural Redesign of Tie Rods. Applied Sciences, 13(17), 9519. https://doi.org/10.3390/app13179519