Data-Completion and Model Correction by Means of Evanescent Regularization
Abstract
:1. Introduction and Related Works
2. Correction of the Available Model
2.1. Methods
2.1.1. Dynamical Model
2.1.2. The Evanescent Regularization
2.1.3. Time Integration and Adjoint-Free Neural ODE
Algorithm 1 Algorithm used for optimizing the simulation model and detecting the initial condition of the unmeasurable parameters, using the adjoint-free neural ODE and the evanescent regularization |
|
2.2. Results: Model Correction
- Relative error on , the initial condition of the non-measurable quantity: 0.49%
- Relative error on the measurable quantities : 0.01%
- Relative error on the unmeasurable quantities : 0.43%
3. A Hybrid Modeling Approach
3.1. A Single Unmeasurable Quantity
- Relative error on , the initial condition of the non-measurable quantity: 0.15%
- Relative error on the measurable quantities : 0.0093%
- Relative error on the unmeasurable quantities : 0.104%
3.2. A More Complex Case
- Mean relative error on , the initial condition of the non-measurable quantity: 0.67%
- Mean relative error on the measurable quantities : 0.051%
- Mean relative error on the unmeasurable quantities : 0.3%
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chinesta, F.; Cueto, E. Empowering engineering with data, machine learning and artificial intelligence: A short introductive review. Adv. Model. Simul. Eng. Sci. 2022, 9, 21. [Google Scholar] [CrossRef]
- Ghnatios, C. A hybrid modeling combining the proper generalized decomposition approach to data-driven model learners, with application to nonlinear biphasic materials. Comptes Rendus Mécanique 2021, 349, 259–273. [Google Scholar] [CrossRef]
- Ghnatios, C.; Kestelyn, X.; Denis, G.; Champaney, V.; Chinesta, F. Learning Data-Driven Stable Corrections of Dynamical Systems-Application to the Simulation of the Top-Oil Temperature Evolution of a Power Transformer. Energies 2023, 16, 5790. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Xu, Y.; Zhang, T.; Wang, X. Deep learning versus conventional methods for missing data imputation: A review and comparative study. Expert Syst. Appl. 2023, 227, 120201. [Google Scholar] [CrossRef]
- Shourangiz-Haghighi, A.; Tavakolpour-Saleh, A. A neural network-based scheme for predicting critical unmeasurable parameters of a free piston Stirling oscillator. Energy Convers. Manag. 2019, 196, 623–639. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Sun, H. Physics-informed learning of governing equations from scarce data. Nat. Commun. 2021, 12, 6136. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Pan, H. Output feedback robust model predictive control with unmeasurable model parameters and bounded disturbance. Chin. J. Chem. Eng. 2016, 24, 1431–1441. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Heinrich, M.K.; Wang, X.; Dorigo, M. 3D hybrid formation control of an underwater robot swarm: Switching topologies, unmeasurable velocities, and system constraints. ISA Trans. 2023, 136, 345–360. [Google Scholar] [CrossRef] [PubMed]
- Taken, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1981; Volume 898, pp. 366–381. [Google Scholar]
- Fraser, A.; Swinney, H. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Delvare, F.; Cimetière, A. The Evanescent Regularieation Method for Elliptic Cauchy Problems. In Inverse Problems and Computational Mechanics; Editura Academiei: Bucharest, Romania, 2011; Volume 1, pp. 101–124. [Google Scholar]
- Ghnatios, C.; Xu, G.; Leygue, A.; Visonneau, M.; Chinesta, F.; Cimetière, A. On the space separated representation when addressing the solution of PDE in complex domains. Discret. Contin. Dyn. Syst. S 2016, 9, 475–500. [Google Scholar] [CrossRef]
- Caillé, L. Méthodes de Régularisation Évanescente pour la Complétion de Données. Ph.D. Thesis, Université de Caen Normandie, Caen, France, 2018. [Google Scholar]
- Chen, R.T.Q.; Rubanova, Y.; Bettencourt, J.; Duvenaud, D. Neural Ordinary Differential Equations. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS 2018), Montreal, QC, Canada, 3–8 December 2018; Volume 32, pp. 1–18. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghnatios, C.; Jiang, D.; Tourbier, Y.; Cimetière, A.; Chinesta, F. Data-Completion and Model Correction by Means of Evanescent Regularization. Appl. Sci. 2023, 13, 9616. https://doi.org/10.3390/app13179616
Ghnatios C, Jiang D, Tourbier Y, Cimetière A, Chinesta F. Data-Completion and Model Correction by Means of Evanescent Regularization. Applied Sciences. 2023; 13(17):9616. https://doi.org/10.3390/app13179616
Chicago/Turabian StyleGhnatios, Chady, Di Jiang, Yves Tourbier, Alain Cimetière, and Francisco Chinesta. 2023. "Data-Completion and Model Correction by Means of Evanescent Regularization" Applied Sciences 13, no. 17: 9616. https://doi.org/10.3390/app13179616
APA StyleGhnatios, C., Jiang, D., Tourbier, Y., Cimetière, A., & Chinesta, F. (2023). Data-Completion and Model Correction by Means of Evanescent Regularization. Applied Sciences, 13(17), 9616. https://doi.org/10.3390/app13179616