The Effect of Duck Bile Acid Extract on the Fecal Microbiota, Short Chain Fatty Acids, Fat Digestibility and Blood Biochemical Indices in Cats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Blood Biochemical Test
2.3. Digestibility of Fat of the Feed
2.4. The Test of SCFAs of the Feces
2.5. Extraction of Fecal DNA
2.6. PCR Amplification
2.7. Data Analysis
3. Results
3.1. Fat Digestibility and Body Weight
3.2. SCFAs Concentration
3.3. Blood Biochemical Indices
3.4. Fecal Microbiota Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Washizu, T.; Ikenaga, H.; Washizu, M.; Ishida, T.; Tomoda, I.; Kaneko, J.J. Bile acid composition of dog and cat gall-bladder bile. Jpn. J. Vet. Sci. 1990, 52, 423–425. [Google Scholar] [CrossRef] [PubMed]
- Duszka, K. Versatile Triad Alliance: Bile Acid, Taurine and Microbiota. Cells 2022, 11, 2337. [Google Scholar] [CrossRef]
- Ocvirk, S.; O’Keefe, S.J. Influence of Bile Acids on Colorectal Cancer Risk: Potential Mechanisms Mediated by Diet-Gut Microbiota Interactions. Curr. Nutr. Rep. 2017, 6, 315–322. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, W.; Liu, S.; Liu, J.; Chen, X.; Gan, F.; Huang, K. Gut microbiota–bile acid–intestinal Farnesoid X receptor signaling axis orchestrates cadmium-induced liver injury. Sci. Total. Environ. 2022, 849, 157861. [Google Scholar] [CrossRef]
- Alzawqari, M.H.; Moghaddam, H.N.; Kermanshahi, H.; Raji, A.R. The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. J. Appl. Anim. Res. 2011, 39, 169–174. [Google Scholar] [CrossRef]
- de Diego-Cabero, N.; Mereu, A.; Menoyo, D.; Holst, J.J.; Ipharraguerre, I.R. Bile acid mediated effects on gut integrity and performance of early-weaned piglets. BMC Veter. Res. 2015, 11, 111. [Google Scholar] [CrossRef]
- Lai, W.Q.; Huang, W.G.; Dong, B.; Cao, A.; Zhang, W.; Li, J.; Wu, H.; Zhang, L. Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poult. Sci. 2018, 97, 196–202. [Google Scholar] [CrossRef]
- Mori, H.; Svegliati Baroni, G.; Marzioni, M.; Di Nicola, F.; Santori, P.; Maroni, L.; Scarpellini, E. Farnesoid X Receptor, Bile Acid Metabolism, and Gut Microbiota. Metabolites 2022, 12, 647. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.W.; Rezaie, A.; Pimentel, M. Bile Acid and Gut Microbiota in Irritable Bowel Syndrome. J. Neurogastroenterol. Motil. 2022, 28, 549–561. [Google Scholar] [CrossRef]
- Wu, L.; Feng, J.; Li, J.; Yu, Q.; Ji, J.; Wu, J.; Dai, W.; Guo, C. The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed. Pharmacother. 2020, 133, 111036. [Google Scholar] [CrossRef]
- Gu, Y.; Li, L.; Yang, M.; Liu, T.; Song, X.; Qin, X.; Xu, X.; Liu, J.; Wang, B.; Cao, H. Bile acid–gut microbiota crosstalk in irritable bowel syndrome. Crit. Rev. Microbiol. 2022, 49, 350–369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-L.; Li, Z.-J.; Gou, H.-Z.; Song, X.-J.; Zhang, L. The gut microbiota–bile acid axis: A potential therapeutic target for liver fibrosis. Front. Cells Infect. Microbiol. 2022, 12, 945368. [Google Scholar] [CrossRef] [PubMed]
- Simbrunner, B.; Trauner, M.; Reiberger, T. Review article: Therapeutic aspects of bile acid signalling in the gut-liver axis. Aliment. Pharmacol. Ther. 2021, 54, 1243–1262. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhuo, L.-B.; He, Y.; Fu, Y.; Shen, L.; Xu, F.; Gou, W.; Miao, Z.; Shuai, M.; Liang, Y.; et al. The gut microbiota-bile acid axis links the positive association between chronic insomnia and cardiometabolic diseases. Nat. Commun. 2022, 13, 3002. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Huang, F.; Zhao, L.; Zhang, Y.; Yang, W.; Wang, S.; Li, M.; Han, X.; Ge, K.; Qu, C.; et al. A dysregulated bile acid-gut microbiota axis contributes to obesity susceptibility. EBioMedicine 2020, 55, 102766. [Google Scholar] [CrossRef]
- Marshall-Jones, Z.V.; Baillon, M.-L.A.; Croft, J.M.; Butterwick, R.F. Effects of Lactobacillus acidophilus DSM13241 as a probiotic in healthy adult cats. Am. J. Veter. Res. 2006, 67, 1005–1012. [Google Scholar] [CrossRef]
- Anna, V.G.; Susan, A.J.; Gerard, M.; Aurelijus, B.; Eoin, S.; Cryan, J.F. Microbiota-related changes in bile acid & tryptophan metabolism are associated with gastrointestinal dysfunction in a mouse model of autism. Ebiomedicine 2017, 24, 166–178. [Google Scholar]
- Islam, K.S.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile Acid Is a Host Factor That Regulates the Composition of the Cecal Microbiota in Rats. Gastroenterology 2011, 141, 1773–1781. [Google Scholar] [CrossRef]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5, 73–98. [Google Scholar] [CrossRef]
- Klaver, F.A.; van der Meer, R. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity. Appl. Environ. Microbiol. 1993, 59, 1120–1124. [Google Scholar] [CrossRef]
- Okoli, A.S.; Raftery, M.J.; Mendz, G.L. Effects of human and porcine bile on the proteome of Helicobacter hepaticus. Proteome Sci. 2012, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Wada, K.; Tan, S.; Kitano, Y.; Kai, J.; Makino, I. Antibacterial action of bile acids against Helicobacter pylori and changes in its ultrastructural morphology: Effect of unconjugated dihydroxy bile acid. J. Gastroenterol. 1999, 34, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Burrin, D.; Stoll, B.; Moore, D. Digestive physiology of the pig symposium: Intestinal bile acid sensing is linked to key endocrine and metabolic signaling pathways. J. Anim. Sci. 2013, 91, 1991–2000. [Google Scholar] [CrossRef]
- Fernandez-Calderon, M.C.; Sanchez-Moro, M.D.H.; Rincon, E.O. In vitro Cholesterol Assimilation by Bifidobacterium animalis subsp. lactis (BPL1) Probiotic Bacteria Under Intestinal Conditions. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 433–439. [Google Scholar] [CrossRef]
- Zanotti, I.; Turroni, F.; Piemontese, A.; Mancabelli, L.; Milani, C.; Viappiani, A.; Ventura, M. Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation. Appl. Microbiol. Biotechnol. 2015, 99, 6813–6829. [Google Scholar] [CrossRef]
- Geng, S.; Zhang, Y.; Cao, A.; Liu, Y.; Di, Y.; Li, J.; Lou, Q.; Zhang, L. Effects of Fat Type and Exogenous Bile Acids on Growth Performance, Nutrient Digestibility, Lipid Metabolism and Breast Muscle Fatty Acid Composition in Broiler Chickens. Animals 2022, 12, 1258. [Google Scholar] [CrossRef]
- Mao, Y.; Fang, L.; Ai, L.; Li, C.; Wang, Z.; Wu, J.; Li, F. An in vivo study of the effects on serum glucose, amylase and histopathology of the feline pancreatic tissue treated by focused ultrasound. PLoS ONE 2014, 9, e88815. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Hu, Y.; Cheng, J.; Cheng, X.; Cheng, P.; Cui, Z. Dietary bile acid supplementation reveals beneficial effects on intestinal healthy status of tongue sole (Cynoglossus semiliaevis). Fish Shellfish Immunol. 2021, 116, 52–60. [Google Scholar] [CrossRef]
- Sasaki, D.; Sasaki, K.; Abe, A.; Ozeki, M.; Kondo, A. Effects of partially hydrolyzed guar gums of different molecular weights on a human intestinal in vitro fermentation model. J. Biosci. Bioeng. 2023, 136, 67–73. [Google Scholar] [CrossRef]
- Horiuchi, H.; Kamikado, K.; Aoki, R.; Suganuma, N.; Nishijima, T.; Nakatani, A.; Kimura, I. Bifidobacterium animalis subsp. lactis GCL2505 modulates host energy metabolism via the short-chain fatty acid receptor GPR43. Sci. Rep. 2020, 10, 4158. [Google Scholar] [CrossRef]
- Zampa, A.; Silvi, S.; Fabiani, R.; Morozzi, G.; Orpianesi, C.; Cresci, A. Effects of different digestible carbohydrates on bile acid metabolism and SCFA production by human gut micro-flora grown in an in vitro semi-continuous culture. Anaerobe 2004, 10, 19–26. [Google Scholar] [CrossRef] [PubMed]
Parameter | Day 0 (Group A) | Day 28 (Group B) | |
---|---|---|---|
Growth | fat digestibility, % | 0.88 ± 0.07 a | 0.93 ± 0.03 b |
weight, g | 3.01 ± 0.70 | 2.96 ± 0.78 | |
SCFAs | acetic acid, mg/mL | 8.59 ± 0.50 | 9.73 ± 0.85 |
propionic acid, mg/mL | 2.70 ± 0.58 | 3.72 ± 0.95 | |
butyrate acid, mg/mL | 2.63 ± 0.75 a | 5.54 ± 0.40 b | |
isovaleric acid, mg/mL | 0.56 ± 0.04 | 0.51 ±0.17 |
Blood Biochemical Indices | Day 0 (Group A) | Day 28 (Group B) |
---|---|---|
TP, g/L | 81.04 ± 8.65 | 81.53 ± 11.15 |
ALB, g/L | 31.47 ± 3.05 | 29.75 ± 2.24 |
TBIL, umol/L | 3.67 ± 0.91 a | 5.44 ± 1.91 b |
GLO, g/L | 49.57 ± 9.82 | 51.78 ± 11.08 |
TBA, µmol/L | 3.41 ± 1.82 | 4.62 ± 2.48 |
AMY, U/L | 1643.14 ± 261.06 a | 1991.67 ± 247.98 b |
TG, mmol/L | 0.64 ± 0.16 | 0.73 ± 0.19 |
CHOL, mmol/L | 4.11 ± 0.74 a | 3.25 ± 0.58 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, B.; Zhao, P.; Liang, S.; Wang, Z.; Tao, H.; Wang, X.; Liu, J.; Wang, J. The Effect of Duck Bile Acid Extract on the Fecal Microbiota, Short Chain Fatty Acids, Fat Digestibility and Blood Biochemical Indices in Cats. Appl. Sci. 2023, 13, 9713. https://doi.org/10.3390/app13179713
Han B, Zhao P, Liang S, Wang Z, Tao H, Wang X, Liu J, Wang J. The Effect of Duck Bile Acid Extract on the Fecal Microbiota, Short Chain Fatty Acids, Fat Digestibility and Blood Biochemical Indices in Cats. Applied Sciences. 2023; 13(17):9713. https://doi.org/10.3390/app13179713
Chicago/Turabian StyleHan, Bing, Peng Zhao, Shukun Liang, Zhenlong Wang, Hui Tao, Xiumin Wang, Jie Liu, and Jinquan Wang. 2023. "The Effect of Duck Bile Acid Extract on the Fecal Microbiota, Short Chain Fatty Acids, Fat Digestibility and Blood Biochemical Indices in Cats" Applied Sciences 13, no. 17: 9713. https://doi.org/10.3390/app13179713
APA StyleHan, B., Zhao, P., Liang, S., Wang, Z., Tao, H., Wang, X., Liu, J., & Wang, J. (2023). The Effect of Duck Bile Acid Extract on the Fecal Microbiota, Short Chain Fatty Acids, Fat Digestibility and Blood Biochemical Indices in Cats. Applied Sciences, 13(17), 9713. https://doi.org/10.3390/app13179713