Thermal Effect of the Back Radiation from Disk to Head after Laser Heating in HAMR
Abstract
:1. Introduction
2. Numerical Analysis
2.1. Theoretical Model
2.2. Spectral Heat Flux
2.3. Dyadic Green’s Function
3. Results and Discussion
3.1. Materials in HAMR
3.2. Spectral Heat Flux of the Back Radiation in HAMR
3.3. The Influence of the Flying Height on the Back Radiation in HAMR
4. Simulation Results and Discussion of the Thermal Deformation of Head
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kryder, M.H.; Gage, E.C.; McDaniel, T.W.; Challener, W.A.; Rottmayer, R.E.; Ganping, J.; Yiao-Tee, H.; Erden, M.F. Heat Assisted Magnetic Recording. Proc. IEEE 2008, 96, 1810–1835. [Google Scholar] [CrossRef]
- Rottmayer, R.E.; Batra, S.; Buechel, D.; Challener, W.A.; Hohlfeld, J.; Kubota, Y.; Li, L.; Lu, B.; Mihalcea, C.; Mountfield, K.; et al. Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2006, 42, 2417–2421. [Google Scholar] [CrossRef]
- Pan, L.; Bogy, D.B. Data storage: Heat-assisted magnetic recording. Nat. Photonics 2009, 3, 189–190. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, H.; Meng, Y.; Bogy, D.B. Nanoscale thermal analysis for heat-assisted magnetic recording. J. Appl. Phys. 2017, 122, 134303. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhou, W.; Huang, X.; Yu, S. Numerical study on thermal-induced lubricant depletion in laser heat-assisted magnetic recording systems. Int. J. Heat Mass Transf. 2012, 55, 886–896. [Google Scholar] [CrossRef]
- Trinh, T.D.; Rajauria, S.; Smith, R.; Schreck, E.; Dai, Q.; Talke, F.E. Temperature-Induced Near-Field Transducer Failure in Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2020, 56, 3300304. [Google Scholar] [CrossRef]
- Zheng, H.; Li, H.; Talke, F.E. Numerical simulation of thermal flying height control sliders in heat-assisted magnetic recording. Microsyst. Technol. 2012, 18, 1731–1739. [Google Scholar] [CrossRef]
- Xu, B.X.; Yuan, H.X.; Zhang, J.; Yang, J.P.; Ji, R.; Chong, T.C. Thermal effect on slider flight height in heat assisted magnetic recording. J. Appl. Phys. 2008, 103, 07F525. [Google Scholar] [CrossRef]
- Xu, B.X.; Hu, S.B.; Yuan, H.X.; Zhang, J.; Chen, Y.J.; Ji, R.; Miao, X.S.; Chen, J.S.; Chong, T.C. Thermal effects of heated magnetic disk on the slider in heat-assisted magnetic recording. J. Appl. Phys. 2006, 99, 08N102. [Google Scholar] [CrossRef]
- Myo, K.S.; Zhou, W.; Huang, X.; Yu, P. Back heating effect of media hot spot at nanoscale head–disk interface. Microsyst. Technol. 2016, 23, 2587–2597. [Google Scholar] [CrossRef]
- Budaev, B.V.; Bogy, D.B. Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording. J. Appl. Phys. 2012, 111, 124508. [Google Scholar] [CrossRef]
- Budaev, B.V.; Bogy, D.B. Heat transport by phonon tunneling across layered structures used in heat assisted magnetic recording. J. Appl. Phys. 2015, 117, 104512. [Google Scholar] [CrossRef]
- Wu, H.; Bogy, D. Use of an embedded contact sensor to study nanoscale heat transfer in heat assisted magnetic recording. Appl. Phys. Lett. 2017, 110, 033104. [Google Scholar] [CrossRef]
- Basu, S.; Zhang, Z.M.; Fu, C.J. Review of near-field thermal radiation and its application to energy conversion. Int. J. Energy Res. 2009, 33, 1203–1232. [Google Scholar] [CrossRef]
- Hu, L.; Narayanaswamy, A.; Chen, X.; Chen, G. Near-field thermal radiation between two closely spaced glass plates exceeding Planck’s blackbody radiation law. Appl. Phys. Lett. 2008, 92, 133106. [Google Scholar] [CrossRef]
- Mulet, J.-P.; Joulain, K.; Carminati, R.; Greffet, J.-J. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 2001, 78, 2931–2933. [Google Scholar] [CrossRef]
- Shen, S.; Narayanaswamy, A.; Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 2009, 9, 2909–2913. [Google Scholar] [CrossRef]
- Biehs, S.A. Thermal heat radiation, near-field energy density and near-field radiative heat transfer of coated materials. Eur. Phys. J. B 2007, 58, 423–431. [Google Scholar] [CrossRef]
- Fu, C.J.; Tan, W.C. Near-field radiative heat transfer between two plane surfaces with one having a dielectric coating. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1027–1036. [Google Scholar] [CrossRef]
- Edalatpour, S.; Francoeur, M. Near-field radiative heat transfer between arbitrarily shaped objects and a surface. Phys. Rev. B 2016, 94, 045406. [Google Scholar] [CrossRef]
- Luo, M.; Dong, J.; Zhao, J.; Liu, L.; Antezza, M. Radiative heat transfer between metallic nanoparticle clusters in both near field and far field. Phys. Rev. B 2019, 99, 134207. [Google Scholar] [CrossRef]
- Chapuis, P.-O.; Laroche, M.; Volz, S.; Greffet, J.-J. Near-field induction heating of metallic nanoparticles due to infrared magnetic dipole contribution. Phys. Rev. B 2008, 77, 125402. [Google Scholar] [CrossRef]
- Chapuis, P.-O.; Laroche, M.; Volz, S.; Greffet, J.-J. Radiative heat transfer between metallic nanoparticles. Appl. Phys. Lett. 2008, 92, 201906. [Google Scholar] [CrossRef]
- Francoeur, M.; Mengüç, M.P.; Vaillon, R. Near-field radiative heat transfer enhancement via surface phonon polaritons coupling in thin films. Appl. Phys. Lett. 2008, 93, 043109. [Google Scholar] [CrossRef]
- Francoeur, M.; Pinar Mengüç, M.; Vaillon, R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 2002–2018. [Google Scholar] [CrossRef]
- Yurkin, M.A.; Hoekstra, A.G. The discrete dipole approximation: An overview and recent developments. J. Quant. Spectrosc. Radiat. Transf. 2007, 106, 558–589. [Google Scholar] [CrossRef]
- Rytov, S.M.; Kravtsov, Y.A.; Tatarskii, V.I.; Today, K.J.P. Principles of Statistical Radiophysics; Springer: Berlin/Heidelberg, Germany, 1989; Volume 42, p. 65. [Google Scholar]
- Joulain, K.; Mulet, J.-P.; Marquier, F.; Carminati, R.; Greffet, J.-J. Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 2005, 57, 59–112. [Google Scholar] [CrossRef]
- Zheng, Z.; Xuan, Y. Theory of near-field radiative heat transfer for stratified magnetic media. Int. J. Heat Mass Transf. 2011, 54, 1101–1110. [Google Scholar] [CrossRef]
- Zheng, Z.; Xuan, Y. Near-field radiative heat transfer between general materials and metamaterials. Chin. Sci. Bull. 2011, 56, 2312–2319. [Google Scholar] [CrossRef]
- Fernandez, R.; Teweldebrhan, D.; Zhang, C.; Balandin, A.; Khizroev, S. A comparative analysis of Ag and Cu heat sink layers in L10-FePt films for heat-assisted magnetic recording. J. Appl. Phys. 2011, 109, 07B763. [Google Scholar] [CrossRef]
- Cen, Z.H.; Xu, B.X.; Hu, J.F.; Li, J.M.; Cher, K.M.; Toh, Y.T.; Ye, K.D.; Zhang, J. Optical property study of FePt-C nanocomposite thin film for heat-assisted magnetic recording. Opt. Express 2013, 21, 9906–9914. [Google Scholar] [CrossRef] [PubMed]
- Chernyshov, A.; Treves, D.; Le, T.; Zong, F.; Ajan, A.; Acharya, R. Measurement of FePt thermal properties relevant to heat-assisted magnetic recording. J. Appl. Phys. 2014, 115, 17B735. [Google Scholar] [CrossRef]
- Willig, L.; Reppert, A.v.; Deb, M.; Ganss, F.; Hellwig, O.; Bargheer, M. Finite-size effects in ultrafast remagnetization dynamics of FePt. Phys. Rev. B 2019, 100, 224408. [Google Scholar] [CrossRef]
- Chen, S.; Shu, X.; Xie, Q.; Zhou, C.; Zhou, J.; Deng, J.; Guo, R.; Peng, Y.G.; Ju, G.; Chen, J. Structure, magnetic and thermal properties of FePt–C–BN granular films for heat assisted magnetic recording. J. Phys. D Appl. Phys. 2020, 53, 135002. [Google Scholar] [CrossRef]
- Rioux, D.; Vallières, S.; Besner, S.; Muñoz, P.; Mazur, E.; Meunier, M. An Analytic Model for the Dielectric Function of Au, Ag, and their Alloys. Adv. Opt. Mater. 2014, 2, 176–182. [Google Scholar] [CrossRef]
- Tikuišis, K.K.; Beran, L.; Cejpek, P.; Uhlířová, K.; Hamrle, J.; Vaňatka, M.; Urbánek, M.; Veis, M. Optical and magneto-optical properties of permalloy thin films in 0.7–6.4 eV photon energy range. Mater. Des. 2017, 114, 31–39. [Google Scholar] [CrossRef]
- Gervais, F.; Piriou, B. Anharmonicity in several-polar-mode crystals: Adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C Solid State Phys. 1974, 7, 2374–2386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhang, G. Thermal Effect of the Back Radiation from Disk to Head after Laser Heating in HAMR. Appl. Sci. 2023, 13, 9730. https://doi.org/10.3390/app13179730
Zhao Y, Zhang G. Thermal Effect of the Back Radiation from Disk to Head after Laser Heating in HAMR. Applied Sciences. 2023; 13(17):9730. https://doi.org/10.3390/app13179730
Chicago/Turabian StyleZhao, Yu, and Guangyu Zhang. 2023. "Thermal Effect of the Back Radiation from Disk to Head after Laser Heating in HAMR" Applied Sciences 13, no. 17: 9730. https://doi.org/10.3390/app13179730
APA StyleZhao, Y., & Zhang, G. (2023). Thermal Effect of the Back Radiation from Disk to Head after Laser Heating in HAMR. Applied Sciences, 13(17), 9730. https://doi.org/10.3390/app13179730