Thermoelectric Properties of Polyaniline/Bismuth Antimony Telluride Composite Materials Prepared via Mechanical Mixing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
- Processing times: 15 min, 45 min and 75 min.
- Processing temperatures: 30 °C, 80 °C and 100 °C.
- Processing pressures: 2 tons (250 MPa) and 4.5 tons (562 MPa).
3. Results and Discussion
3.1. Figure of Merit (ZT)
3.2. Morphology
3.3. Effect of BST Content
3.4. Pressure Effect
3.5. Temperature Effect
3.6. Time Effect
3.7. Enhancement of the BST Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermo-electric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Twaha, S.; Zhu, J.; Yan, Y.; Li, B. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement. Renew. Sustain. Energy Rev. 2016, 65, 698–726. [Google Scholar] [CrossRef]
- Patidar, S. Applications of Thermoelectric Energy: A Review. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 1992–1996. [Google Scholar] [CrossRef]
- LeBlanc, S. Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications. Sustain. Mater. Technol. 2014, 1, 26–35. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, L.D. Thermoelectric materials: Energy conversion between heat and electricity. J. Mater. 2015, 1, 92–105. [Google Scholar] [CrossRef]
- Tritt, T.M.; Subramanian, M.A. Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View. MRS Bull. 2006, 31, 188–198. [Google Scholar] [CrossRef]
- Blackburn, J.L.; Ferguson, A.J.; Cho, C.; Grunlan, J.C. Carbon-Nanotube-Based Thermoelectric Materials and Devices. Adv. Mater. 2018, 30, 1704386. [Google Scholar] [CrossRef]
- Nozariasbmarz, A.; Poudel, B.; Li, W.; Kang, H.B.; Zhu, H.; Priya, S. Bismuth Telluride Thermoelectrics with 8% Module Efficiency for Waste Heat Recovery Application. iScience 2020, 23, 101340. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Yang, L.; Ma, Z.; Song, P.; Zhang, M.; Ma, J.; Yang, F.; Wang, X. Review of current high-ZT thermoelectric materials. J. Mater. Sci. 2020, 55, 12642–12704. [Google Scholar] [CrossRef]
- Wei, Q.; Mukaida, M.; Kirihara, K.; Naitoh, Y.; Ishida, T. Recent Progress on PEDOT-Based Thermoelectric Materials. Materials 2015, 8, 732–750. [Google Scholar] [CrossRef] [PubMed]
- Bubnova, O.; Crispin, X. Towards polymer-based organic thermoelectric generators. Energy Environ. Sci. 2012, 5, 9345–9362. [Google Scholar] [CrossRef]
- Kamarudin, M.A.; Sahamir, S.R.; Datta, R.S.; Long, B.D.; Mohd Sabri, M.F.; Mohd Said, S. A review on the fabrication of polymer-based thermoelectric materials and fabrication methods. Sci. World J. 2013, 2013, 713640. [Google Scholar] [CrossRef]
- Culebras, M.; Gómez, C.M.; Cantarero, A. Review on polymers for thermoelectric applications. Materials 2014, 6, 6701–6732. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Shi, X.L.; Shi, X.; Chen, L.; Dargusch, M.S.; Zou, J.; Chen, Z.G. Flexible Thermoelectric Materials and Generators: Challenges and Innovations. Adv. Mater. 2019, 31, 1807916. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, J.; Song, H.; Pan, Y.; Song, Y.; Zhu, Y.; Yao, Y.; Huang, F.; Zuo, C. High performance polypyrrole/SWCNTs composite film as a promising organic thermoelectric material. RSC Adv. 2021, 11, 17704–17709. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.-J.; Zhang, H.-L.; Zhang, Q. Recent Progress in Thermoelectric Materials Based on Conjugated Polymers. Polymers 2019, 11, 107. [Google Scholar] [CrossRef]
- Viskadourakis, Z.; Drymiskianaki, A.; Papadakis, V.M.; Ioannou, I.; Kyratsi, T.; Kenanakis, G. Thermoelectric performance of mechanically mixed bixsb2-xte3—Abs composites. Materials 2021, 14, 1706. [Google Scholar] [CrossRef]
- Rösch, A.G.; Gall, A.; Aslan, S.; Hecht, M.; Franke, L.; Mallick, M.M.; Penth, L.; Bahro, D.; Friderich, D.; Lemmer, U. Fully printed origami thermoelectric generators for energy-harvesting. NPJ Flex. Electron. 2021, 5, 1. [Google Scholar] [CrossRef]
- Du, Y.; Cai, K.F.; Chen, S.; Cizek, P.; Lin, T. Facile preparation and thermoelectric properties of Bi2Te 3 based alloy nanosheet/PEDOT:PSS composite films. ACS Appl. Mater. Interfaces 2014, 6, 5735–5743. [Google Scholar] [CrossRef]
- Cho, C.; Wallace, K.L.; Tzeng, P.; Hsu, J.H.; Yu, C.; Grunlan, J.C. Outstanding Low Temperature Thermoelectric Power Factor from Completely Organic Thin Films Enabled by Multidimensional Conjugated Nanomaterials. Adv. Energy Mater. 2016, 6, 1502168. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, Q.; Chang, J.; Chen, L. Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains. J. Mater. Chem. 2012, 22, 17612–17618. [Google Scholar] [CrossRef]
- Valentová, H.; Prokeš, J.; Nedbal, J.; Stejskal, J. Effect of compression pressure on mechanical and electrical properties of polyaniline pellets. Chem. Pap. 2013, 67, 1109–1112. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Choi, K.; Grunlan, J.C.; Yu, C. Improved thermoelectric behavior of nanotube-filled polymer composites with poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). ACS Nano 2010, 4, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Masoumi, S.; Gedefaw, D.; O’Shaughnessy, S.; Baran, D.; Pakdel, A. Flexible solar and thermal energy conversion devices: Organic photovoltaics (OPVs), organic thermoelectric generators (OTEGs) and hybrid PV-TEG systems. Appl. Mater. Today 2022, 29, 101614. [Google Scholar] [CrossRef]
- Du, Y.; Shen, S.Z.; Cai, K.; Casey, P.S. Research progress on polymer-inorganic thermoelectric nanocomposite materials. Prog. Polym. Sci. 2012, 37, 820–841. [Google Scholar] [CrossRef]
- Ioannou, I.; Ioannou, P.S.; Kyratsi, T.; Giapintzakis, J. Low-cost preparation of highly-efficient thermoelectric BixSb2-xTe3 nanostructured powders via mechanical alloying. J. Solid State Chem. 2023, 319, 123823. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Bismuth telluride and its alloys as materials for thermoelectric generation. Materials 2014, 7, 2577–2592. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, G.; Kim, J.; Sirringhaus, H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog. Polym. Sci. 2022, 129, 101548. [Google Scholar] [CrossRef]
- Chatterjee, K.; Mitra, M.; Kargupta, K.; Ganguly, S.; Banerjee, D. Synthesis, characterization and enhanced thermoelectric performance of structurally ordered cable-like novel polyaniline-bismuth telluride nanocomposite. Nanotechnology 2013, 24, 215703. [Google Scholar] [CrossRef]
- Urkude, R.R.; Patil, P.T.; Kondawar, S.B.; Palikundwar, U.A. Synthesis, Characterization and Electrical Properties of a Composite of Topological Insulating Material: Bi2Te3-PANI. Procedia Mater. Sci. 2015, 10, 205–211. [Google Scholar] [CrossRef]
- Eryilmaz, I.H.; Chen, Y.F.; Mattana, G.; Orgiu, E. Organic thermoelectric generators: Working principles, materials, and fabrication techniques. Chem. Commun. 2023, 59, 3160–3174. [Google Scholar] [CrossRef]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774. [Google Scholar] [CrossRef]
- Cao, T.; Shi, X.L.; Li, M.; Hu, B.; Chen, W.; Liu, W.; di Lyu, W.; MacLeod, J.; Chen, Z.G. Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. eScience 2023, 3, 100122. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, L.; Zhang, W.; Liufu, S.; Chen, X. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 2010, 4, 2445–2451. [Google Scholar] [CrossRef]
- Yao, Q.; Wang, Q.; Wang, L.; Chen, L. Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering. Energy Environ. Sci. 2014, 7, 3801–3807. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Liu, Y.; Li, P.; Liu, S.; He, C. Advancement of Polyaniline/Carbon Nanotubes Based Thermoelectric Composites. Materials 2022, 15, 8644. [Google Scholar] [CrossRef]
- al Naim, A.F.; El-Shamy, A.G. Review on recent development on thermoelectric functions of PEDOT:PSS based systems. Mater. Sci. Semicond. Process. 2022, 152, 107041. [Google Scholar] [CrossRef]
- Qiu, L.; Guo, P.; Kong, Q.; Tan, C.W.; Liang, K.; Wei, J.; Tey, J.N.; Feng, Y.; Zhang, X.; Tay, B.K. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon 2019, 145, 725–733. [Google Scholar] [CrossRef]
- Gelbstein, Y. Thermoelectric power and structural properties in two-phase Sn/SnTe alloys. J. Appl. Phys. 2009, 105, 023713. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Liu, G.; Shan, F. Achieving high power factor of p-type BiSbTe thermoelectric materials via adjusting hot-pressing temperature. Intermetallics 2018, 93, 338–342. [Google Scholar] [CrossRef]
System | Model/Manufacturer | Accuracy |
---|---|---|
Measuring Seebeck coefficient and electrical conductivity system | ZEM-3 (ULVAC) | 5% |
Measuring thermal conductivity system | NETZSCH LFA 457 | 10% |
Process temperatures (°C) | 30, 80 and 100 | |
Process pressures (tons) | 2 and 4.5 | |
Processing times (min) | 15, 45 and 75 | |
Limitations | Processing with 4.5 tons and 100 °C |
Sample Code | BST Content (wt.%) | Temperature (°C) | Press (tons) | Duration (min) | Density (g/cm3) |
---|---|---|---|---|---|
0-T30-P4.5-D15 | 0 | 30 | 4.5 | 15 | 1.21 |
0-T30-P4.5-D45 | 0 | 30 | 4.5 | 45 | 1.19 |
0-T30-P4.5-D75 | 0 | 30 | 4.5 | 75 | 1.22 |
0-T30-P2-D15 | 0 | 30 | 2 | 15 | 1.21 |
0-T30-P2-D45 | 0 | 30 | 2 | 45 | 1.23 |
0-T30-P2-D75 | 0 | 30 | 2 | 75 | 1.24 |
0-T80-P4.5-D15 | 0 | 80 | 4.5 | 15 | 1.18 |
0-T80-P4.5-D45 | 0 | 80 | 4.5 | 45 | 1.21 |
0-T80-P4.5-D75 | 0 | 80 | 4.5 | 75 | 1.24 |
0-T80-P2-D15 | 0 | 80 | 2 | 15 | 1.24 |
0-T80-P2-D45 | 0 | 80 | 2 | 45 | 1.25 |
0-T80-P2-D75 | 0 | 80 | 2 | 75 | 1.24 |
0-T100-P2-D15 | 0 | 100 | 2 | 15 | 1.19 |
0-T100-P2-D45 | 0 | 100 | 2 | 45 | 1.24 |
0-T100-P2-D75 | 0 | 100 | 2 | 75 | 1.24 |
20-T30-P4.5-D15 | 20 | 30 | 4.5 | 15 | 1.48 |
20-T30-P4.5-D45 | 20 | 30 | 4.5 | 45 | 1.44 |
20-T30-P4.5-D75 | 20 | 30 | 4.5 | 75 | 1.45 |
20-T30-P2-D15 | 20 | 30 | 2 | 15 | 1.47 |
20-T30-P2-D45 | 20 | 30 | 2 | 45 | 1.48 |
20-T30-P2-D75 | 20 | 30 | 2 | 75 | 1.40 |
20-T80-P4.5-D15 | 20 | 80 | 4.5 | 15 | 1.48 |
20-T80-P4.5-D45 | 20 | 80 | 4.5 | 45 | 1.43 |
20-T80-P4.5-D75 | 20 | 80 | 4.5 | 75 | 1.45 |
20-T80-P2-D15 | 20 | 80 | 2 | 15 | 1.49 |
20-T80-P2-D45 | 20 | 80 | 2 | 45 | 1.49 |
20-T80-P2-D75 | 20 | 80 | 2 | 75 | 1.49 |
20-T100-P2-D15 | 20 | 100 | 2 | 15 | 1.48 |
20-T100-P2-D45 | 20 | 100 | 2 | 45 | 1.50 |
20-T100-P2-D75 | 20 | 100 | 2 | 75 | 1.48 |
30-T30-P4.5-D15 | 30 | 30 | 4.5 | 15 | 1.65 |
30-T30-P4.5-D45 | 30 | 30 | 4.5 | 45 | 1.57 |
30-T30-P4.5-D75 | 30 | 30 | 4.5 | 75 | 1.60 |
30-T30-P2-D15 | 30 | 30 | 2 | 15 | 1.60 |
30-T30-P2-D45 | 30 | 30 | 2 | 45 | 1.58 |
30-T30-P2-D75 | 30 | 30 | 2 | 75 | 1.62 |
30-T80-P4.5-D15 | 30 | 80 | 4.5 | 15 | 1.62 |
30-T80-P4.5-D45 | 30 | 80 | 4.5 | 45 | 1.53 |
30-T80-P4.5-D75 | 30 | 80 | 4.5 | 75 | 1.60 |
30-T80-P2-D15 | 30 | 80 | 2 | 15 | 1.64 |
30-T80-P2-D45 | 30 | 80 | 2 | 45 | 1.64 |
30-T80-P2-D75 | 30 | 80 | 2 | 75 | 1.63 |
30-T100-P2-D15 | 30 | 100 | 2 | 15 | 1.55 |
30-T100-P2-D45 | 30 | 100 | 2 | 45 | 1.62 |
30-T100-P2-D75 | 30 | 100 | 2 | 75 | 1.65 |
Press | Composition | ZT (×10−3) | ||||||||
15 min | 45 min | 75 min | ||||||||
30 °C | 80 °C | 100 °C | 30 °C | 80 °C | 100 °C | 30 °C | 80 °C | 100 °C | ||
4.5 tons | Pure PANI | 0.016 | 0.099 | - | 0.015 | 0.150 | - | 0.020 | 0.069 | - |
20 wt.% BST | 0.403 | 1.140 | - | 0.041 | 0.730 | - | 0.042 | 0.818 | - | |
30 wt.% BST | 0.094 | 1.430 | - | 0.073 | 1.770 | - | 0.249 | 1.500 | - | |
2 tons | Pure PANI | 0.007 | 0.087 | 0.083 | 0.027 | 0.025 | 0.046 | 0.015 | 0.079 | 0.071 |
20 wt.% BST | 0.033 | 0.882 | 1.410 | 0.021 | 0.817 | 0.943 | 0.025 | 0.702 | 1.200 | |
30 wt.% BST | 0.025 | 2.520 | 1.790 | 0.026 | 1.360 | 1.170 | 0.151 | 2.930 | 1.780 |
Sample | S (μV/K) | σ (S/cm) | κ (W/Km) | ZT (×10−3) |
---|---|---|---|---|
30-T80-P2-D75 | 39.67 | 12.937 | 0.2800 | 2.930 |
30-T80-P2-D15 | 38.48 | 11.276 | 0.2671 | 2.520 |
20-T100-P2-D15 | 29.19 | 11.875 | 0.2896 | 1.410 |
20-T100-P2-D75 | 28.02 | 10.324 | 0.2715 | 1.200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjipanteli, S.; Ioannou, P.S.; Krasia-Christoforou, T.; Kyratsi, T. Thermoelectric Properties of Polyaniline/Bismuth Antimony Telluride Composite Materials Prepared via Mechanical Mixing. Appl. Sci. 2023, 13, 9757. https://doi.org/10.3390/app13179757
Hadjipanteli S, Ioannou PS, Krasia-Christoforou T, Kyratsi T. Thermoelectric Properties of Polyaniline/Bismuth Antimony Telluride Composite Materials Prepared via Mechanical Mixing. Applied Sciences. 2023; 13(17):9757. https://doi.org/10.3390/app13179757
Chicago/Turabian StyleHadjipanteli, Savvas, Panagiotis S. Ioannou, Theodora Krasia-Christoforou, and Theodora Kyratsi. 2023. "Thermoelectric Properties of Polyaniline/Bismuth Antimony Telluride Composite Materials Prepared via Mechanical Mixing" Applied Sciences 13, no. 17: 9757. https://doi.org/10.3390/app13179757
APA StyleHadjipanteli, S., Ioannou, P. S., Krasia-Christoforou, T., & Kyratsi, T. (2023). Thermoelectric Properties of Polyaniline/Bismuth Antimony Telluride Composite Materials Prepared via Mechanical Mixing. Applied Sciences, 13(17), 9757. https://doi.org/10.3390/app13179757