Probabilistic Seismic Hazard Analysis of a Back Propagation Neural Network Predicting the Peak Ground Acceleration
Abstract
:1. Introduction
2. Earthquake Catalogs
2.1. Known PGA Data
2.2. Unknown PGA Data
3. BPNN-Based PGA Prediction
- (1)
- The known PGA data are randomly split into a training set, a validation set, and a test set in the ratio of 7:1.5:1.5 to avoid errors in the prediction results caused by large differences in the order of magnitude using data normalization.
- (2)
- The BPNN (Figure 6) is constructed with three elements (a magnitude of Richter scale, focal depth, and the epicentral distance) in the input layer and one element (PGA) in the output layer. To avoid underfitting and overfitting, the number of hidden layers is set to two, each layer has four neurons, and the number of neurons is obtained by considering the number of elements in the input and output layers in combination with several attempts, where the transfer function (transig) and the training function (trainlm) are non-linear functions [37].
- (3)
- The data set is trained with the determinants of the coefficients that are greater than 0.95 as the index to obtain the fitted network, where the regression fitting results are shown in Figure 7.
- (4)
- After saving the network, the normalized unknown PGA data are inputted into the network. The predicted data are obtained and inverse normalized to obtain the final predicted PGA.
4. PSHA
4.1. The PSHA Method
4.2. Cumulative Probability Distribution of the PGA
4.3. Logic Tree
5. Results
6. Conclusions
- (1)
- The results of the seismic hazard curves show that the probability of exceeding the ground motion equal to 10% in 50 years for the California region is in close agreement with the data in ASCE 7-16, with an error of 2.27%.
- (2)
- The BPNN method of predicting the PGA is convenient for the PSHA in areas with unknown geological conditions, which can be only performed using the seismic catalogues alone and can ensure the accuracy and generalizability of the analysis results while having the ability to take into account the non-linear relationships that exist between multiple parameters.
- (3)
- Based on the full probability formula, adding the effect of the focal depth on the annual average transcendental probability formula for the seismic events that satisfy the PGA greater than a given value can improve the PSHA.
- (4)
- When determining the weights of the CDFs through the logic tree, the use of weighting the goodness-of-fit coefficients enables more emphasis to be placed on the CDFs with better fitting results, but without biasing the results due to overemphasis.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, H.N.; Liu, Y.; Li, C.; Zheng, X.W. Multihazard fragility assessment of steel-concrete composite frame structures with buckling-restrained braces subjected to combined earthquake and wind. Struct. Des. Tall Spec. Build. 2020, 29, e1746. [Google Scholar] [CrossRef]
- Gerstenberger, M.C.; Marzocchi, W.; Allen, T.; Pagani, M.; Adams, J.; Danciu, L.; Field, E.H.; Fujiwara, H.; Luco, N.; Ma, K.-F.; et al. Probabilistic Seismic Hazard Analysis at Regional and National Scales: State of the Art and Future Challenges. Rev. Geophys. 2020, 58, e2019RG000653. [Google Scholar] [CrossRef]
- Mehta, P.; Thaker, T.P. Seismic Hazard Analysis of Vadodara Region, Gujarat, India: Probabilistic & Deterministic Approach. J. Earthq. Eng. 2020, 26, 1438–1460. [Google Scholar]
- Cornell, C.A. Engineering seismic risk analysis. Bull. Seismol. Soc. Am. 1968, 58, 1583–1606. [Google Scholar] [CrossRef]
- Chioccarelli, E.; Cito, P.; Iervolino, I.; Giorgio, M. REASSESS V2.0: Software for single- and multi-site probabilistic seismic hazard analysis. Bull. Earthq. Eng. 2018, 17, 1769–1793. [Google Scholar] [CrossRef]
- Ebrahimian, H.; Jalayer, F.; Forte, G.; Convertito, V.; Licata, V.; d’Onofrio, A.; Santo, A.; Silvestri, F. Site-specific probabilistic seismic hazard analysis for the western area of Naples, Italy. Bull. Earthq. Eng. 2019, 17, 4743–4796. [Google Scholar] [CrossRef]
- Zanini, M.A.; Hofer, L.; Toska, K. A semi-analytical formulation for accounting uncertainties of hazard parameters in structural seismic reliability analysis. Eng. Struct. 2019, 192, 18–29. [Google Scholar] [CrossRef]
- Falero, V.M.; Bommer, J.J. Virtual Fault Ruptures in Area-Source Zones for PSHA: Are They Always Needed? Seismol. Res. Lett. 2020, 91, 2310–2319. [Google Scholar] [CrossRef]
- Pagani, M.; Hao, K.X.; Fujiwara, H.; Gerstenberger, M.; Ma, K.-F. Appraising the PSHA Earthquake Source Models of Japan, New Zealand, and Taiwan. Seismol. Res. Lett. 2016, 87, 1240–1253. [Google Scholar] [CrossRef]
- Li, B.; Cai, Z.; Xie, W.-C.; Pandey, M. Probabilistic seismic hazard analysis considering site-specific soil effects. Soil Dyn. Earthq. Eng. 2018, 105, 103–113. [Google Scholar] [CrossRef]
- Jones, R.H.; Stewart, R.C. A method for determining significant structures in a cloud of earthquakes. J. Geophys. Res. Solid Earth 1997, 102, 8245–8254. [Google Scholar] [CrossRef]
- Wang, Z.; Kao, H. The significance of tomographic edge zones for large earthquakes in Taiwan. J. Geophys. Res. Solid Earth 2019, 124, 11822–11839. [Google Scholar] [CrossRef]
- Arora, B.R. Introduction to Seismology. Episodes 2010, 33, 125–126. [Google Scholar] [CrossRef]
- Gómez-Novell, O.; García-Mayordomo, J.; Ortuño, M.; Masana, E.; Chartier, T. Fault System-Based Probabilistic Seismic Hazard Assessment of a Moderate Seismicity Region: The Eastern Betics Shear Zone (SE Spain). Front. Earth Sci. 2020, 8. [Google Scholar] [CrossRef]
- Valentini, A.; Pace, B.; Boncio, P.; Visini, F.; Pagliaroli, A.; Pergalani, F. Definition of Seismic Input From Fault-Based PSHA: Remarks After the 2016 Central Italy Earthquake Sequence. Tecton 2019, 38, 595–620. [Google Scholar] [CrossRef]
- Barani, S.; Ferretti, G.; De Ferrari, R. Incorporating results from seismic microzonation into probabilistic seismic hazard analysis: An example in western Liguria (Italy). Eng. Geol. 2020, 267, 105479. [Google Scholar] [CrossRef]
- Assatourians, K.; Atkinson, G.M. Implementation of a Smoothed-Seismicity Algorithm in Monte Carlo PSHA Software EqHaz and Implications for Localization of Hazard in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 2019, 90, 1407–1419. [Google Scholar] [CrossRef]
- Li, B.; Sørensen, M.B.; Atakan, K.; Li, Y.; Li, Z. Probabilistic Seismic Hazard Assessment for the Shanxi Rift System, North China. Bull. Seismol. Soc. Am. 2020, 110, 127–153. [Google Scholar] [CrossRef]
- Ahmed, M.; Lodi, S.H.; Rafi, M.M. Probabilistic Seismic Hazard Analysis Based Zoning Map of Pakistan. J. Earthq. Eng. 2019, 26, 1–36. [Google Scholar] [CrossRef]
- Douglas, J. Earthquake ground motion estimation using strong-motion records: A review of equations for the estimation of peak ground acceleration and response spectral ordinates. Earth Sci. Rev. 2003, 61, 43–104. [Google Scholar] [CrossRef]
- Phung, V.-B.; Loh, C.H.; Chao, S.H.; Abrahamson, N.A. Ground motion prediction equation for Taiwan subduction zone earthquakes. Earthq. Spectra 2020, 36, 1331–1358. [Google Scholar] [CrossRef]
- Barani, S.; Albarello, D.; Massa, M.; Spallarossa, D. Influence of Twenty Years of Research on Ground-Motion Prediction Equations on Probabilistic Seismic Hazard in Italy. Bull. Seismol. Soc. Am. 2017, 107, 240–255. [Google Scholar] [CrossRef]
- Milner, K.R.; Shaw, B.E.; Goulet, C.A.; Richards-Dinger, K.B.; Callaghan, S.; Jordan, T.H.; Dieterich, J.H.; Field, E.H. Toward Physics-Based Nonergodic PSHA: A Prototype Fully Deterministic Seismic Hazard Model for Southern California. Bull. Seismol. Soc. Am. 2021, 111, 898–915. [Google Scholar] [CrossRef]
- Yazdani, A.; Shahidzadeh, M.-S.; Takada, T. Merging data and experts’ knowledge-based weights for ranking GMPEs. Earthq. Spectra 2020, 37, 857–875. [Google Scholar] [CrossRef]
- Villani, M.; Polidoro, B.; McCully, R.; Ader, T.; Edwards, B.; Rietbrock, A.; Lubkowski, Z.; Courtney, T.J.; Walsh, M. A Selection of GMPEs for the United Kingdom Based on Instrumental and Macroseismic Datasets. Bull. Seismol. Soc. Am. 2019, 109, 1378–1400. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Sreenivas, M.; Bajaj, K.; Moustafa, S.S.R.; Al-Arifi, N. Selection of Ground Motion Prediction Equations for Seismic Hazard Analysis of Peninsular India. J. Earthq. Eng. 2015, 20, 699–737. [Google Scholar] [CrossRef]
- Herrmann, R.B.; Nuttli, O.W. Ground-motion modelling at regional distances for earthquakes in a continental interior, II. Effect of focal depth, azimuth and attenuation. Earthq. Eng. Struct. Dyn. 1975, 4, 59–72. [Google Scholar] [CrossRef]
- Salditch, L.; Gallahue, M.M.; Lucas, M.C.; Hough, S.E.; Neely, J.S.; Stein, S. California Historical Intensity Mapping Project (CHIMP): A Consistently Reinterpreted Dataset of Seismic Intensities for the Past 162 Yr and Implications for Seismic Hazard Maps. Seismol. Res. Lett. 2020, 91, 2631–2650. [Google Scholar] [CrossRef]
- Chiou, B.; Darragh, R.; Gregor, N.; Silva, W. NGA Project Strong-Motion Database. Earthq. Spectra 2008, 24, 23–44. [Google Scholar] [CrossRef]
- Haddadi, H.R.; Shakal, A.F.; Stephens, C.D.; Savage, W.; Huang, M.; Leith, W.; Parrish, J. Center for Engineering Strong Motion Data; USGS: Reston, VA, USA, 2010.
- Archuleta, R.J.; Steidl, J.; Squibb, M. The COSMOS Virtual Data Center: A Web Portal for Strong Motion Data Dissemination. Seismol. Res. Lett. 2006, 77, 651–658. [Google Scholar] [CrossRef]
- Fernández-Nóvoa, D.; Costoya, X.; Decastro, M.; Gesteira, M.G. Influence of the mightiest rivers worldwide on coastal sea surface temperature warming. Sci. Total Environ. 2021, 768, 144915. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Hu, X.; Yuan, H. Residual displacement estimation of the bilinear SDOF systems under the near-fault ground motions using the BP neural network. Adv. Struct. Eng. 2022, 25, 552–571. [Google Scholar] [CrossRef]
- Lin, J.-W.; Chiou, J.-S. Active Probability Backpropagation Neural Network Model for Monthly Prediction of Probabilistic Seismic Hazard Analysis in Taiwan. IEEE Access 2019, 7, 108990–109014. [Google Scholar] [CrossRef]
- Shama, A. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE. Earthq. Eng. Eng. Vib. 2011, 10, 143–152. [Google Scholar] [CrossRef]
- Wu, J.; Gao, M.; Huang, B.; Chen, K. Discussion on the influence of truncation of ground motion residual distribution on probabilistic seismic hazard assessment. Earthq. Eng. Eng. Vib. 2011, 10, 379–392. [Google Scholar] [CrossRef]
- Ismailov, V.E. On the approximation by neural networks with bounded number of neurons in hidden layers. J. Math. Anal. Appl. 2014, 417, 963–969. [Google Scholar] [CrossRef]
- Zheng, X.-W.; Li, H.-N.; Yang, Y.-B.; Li, G.; Huo, L.-S.; Liu, Y. Damage risk assessment of a high-rise building against multihazard of earthquake and strong wind with recorded data. Eng. Struct. 2019, 200, 109697. [Google Scholar] [CrossRef]
- Kiureghian, A.D.; Ang, H.S. A fault-rupture model for seismic risk analysis. Bull. Seismol. Soc. Am. 1977, 67, 1173–1194. [Google Scholar]
- Frankel, A. Mapping Seismic Hazard in the Central and Eastern United States. Seismol. Res. Lett. 1995, 66, 8–21. [Google Scholar] [CrossRef]
- Bommer, J.J.; Crowley, H. The Purpose and Definition of the Minimum Magnitude Limit in PSHA Calculations. Seismol. Res. Lett. 2017, 88, 1097–1106. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C.F. Frequency of earthquakes in California. Bull. Seismol. Soc. Am. 1944, 34, 185–188. [Google Scholar] [CrossRef]
- Ordaz, M.; Salgado-Gálvez, M.A.; Giraldo, S. R-CRISIS: 35 years of continuous developments and improvements for probabilistic seismic hazard analysis. Bull. Earthq. Eng. 2021, 19, 2797–2816. [Google Scholar] [CrossRef]
- Roshan, A.D.; Basu, P.C. Application of PSHA in low seismic region: A case study on NPP site in peninsular India. Nucl. Eng. Des. 2010, 240, 3443–3454. [Google Scholar] [CrossRef]
- Villani, M.; Lubkowski, Z.; Free, M.; Musson, R.M.W.; Polidoro, B.; McCully, R.; Koskosidi, A.; Oakman, C.; Courtney, T.; Walsh, M. A probabilistic seismic hazard assessment for Wylfa Newydd, a new nuclear site in the United Kingdom. Bull. Earthq. Eng. 2020, 18, 4061–4089. [Google Scholar] [CrossRef]
- Du, W.; Pan, T.-C. Probabilistic seismic hazard assessment for Singapore. Nat. Hazards 2020, 103, 2883–2903. [Google Scholar] [CrossRef]
- Pothon, A.; Gueguen, P.; Buisine, S.; Bard, P.-Y. Comparing Probabilistic Seismic Hazard Maps with ShakeMap Footprints for Indonesia. Seismol. Res. Lett. 2020, 91, 847–858. [Google Scholar] [CrossRef]
- American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures; ASCE: Reston, VA, USA, 2017. [Google Scholar]
Type | CDF | a | b | c | R2 |
---|---|---|---|---|---|
Sample A | Gumbel | 122.4 | 145.5 | —— | 0.9797 |
Frechet | −157.6 | 268.8 | 2.179 | 0.9942 | |
Weibull | 10.17 | 223.5 | 0.9294 | 0.9971 | |
GPD | 6.825 | 215.6 | 0.09101 | 0.9969 | |
Sample B | Gumbel | 46.7 | 42.6 | —— | 0.9724 |
Frechet | −3.254 × 104 | 3.259 × 104 | 765.3 | 0.9723 | |
Weibull | 55.5 | 136 | 2.958 | 0.9755 | |
GPD | 6.944 | 73.03 | 2.676 × 10−7 | 0.9591 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Li, H.; Zhang, H.; Wang, Q.; Xu, J. Probabilistic Seismic Hazard Analysis of a Back Propagation Neural Network Predicting the Peak Ground Acceleration. Appl. Sci. 2023, 13, 9790. https://doi.org/10.3390/app13179790
Guo X, Li H, Zhang H, Wang Q, Xu J. Probabilistic Seismic Hazard Analysis of a Back Propagation Neural Network Predicting the Peak Ground Acceleration. Applied Sciences. 2023; 13(17):9790. https://doi.org/10.3390/app13179790
Chicago/Turabian StyleGuo, Xin, Hongnan Li, Hao Zhang, Qi Wang, and Jiran Xu. 2023. "Probabilistic Seismic Hazard Analysis of a Back Propagation Neural Network Predicting the Peak Ground Acceleration" Applied Sciences 13, no. 17: 9790. https://doi.org/10.3390/app13179790
APA StyleGuo, X., Li, H., Zhang, H., Wang, Q., & Xu, J. (2023). Probabilistic Seismic Hazard Analysis of a Back Propagation Neural Network Predicting the Peak Ground Acceleration. Applied Sciences, 13(17), 9790. https://doi.org/10.3390/app13179790