Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment
Abstract
:1. Introduction
2. The WCLL COB Segment
3. Structural Assessment of the Reference WCLL COB Segment BC Region
3.1. Reference BC Region v0
3.1.1. The FEM Model
- Mechanical restraints: With the aim of realistic simulating the presence of the entire COB segment acting on the considered BC region, the displacements field, obtained in [9], has been mapped and applied on the upper surface of the structure, as already achieved in previous analyses [4]. In particular, the corresponding displacement field has been exported from the whole COB Segment analysis and applied in accordance with the considered loading scenario. In Figure 4, the mapped displacement field on the upper surface in NO and OP loading scenarios is reported. For the sake of brevity, the deformed vs. undeformed shapes of the entire COB Segment have not been reported, but they can be easily found by looking at Figure 13 of the reference document [9].
- Pressure: The design pressures, calculated as the nominal pressure multiplied by a safety factor equal to 1.15, have been applied to the Breeder-wetted and water-wetted surfaces. In particular, a pressure of 17.825 MPa has been considered for the coolant; instead, a pressure of 0.575 MPa for the PbLi has been assumed. During the NO loading scenario, the coolant design pressure has been imposed on the water-wetted surfaces (i.e., the FW-SWs cooling channels), whereas the breeder design pressure has been set to the internal BZ surfaces. As well as the OP scenario, representing an over-pressurisation condition subsequent to an in-box LOCA event, the coolant design pressure has been assumed both for the water-wetted and the breeder-wetted surfaces.
- Gravity: The gravity load has been applied to the entire structure.
3.1.2. Results
3.2. Reference BC Region v1
3.2.1. The FEM Model
3.2.2. Results
4. Thermal and Structural Analysis and Design Improvements of the BC Region
4.1. The First Update (v1) of the BC Region Design
4.1.1. The FEM Model
- Nonuniform heat flux on the Tungsten surface: the value of heat flux at the end of the flat-top for the WCLL COB segment, at the corresponding poloidal region, has been selected in order to take into account the heat flux due to particles and radiation from the plasma. A uniform value of 0.67 MW/m2 [14] has been applied to the straight surface, whereas a cosine-dependent law has been assumed for the bend tungsten surfaces to consider a decreasing value from the uniform one to zero.
- Nonuniform nuclear power density: In order to consider the heat power deposited by neutrons and gamma photons, a 3D nonuniform spatial distribution of volumetric heat power density has been applied to the entire model, properly considering the Eurofer, Tungsten, PbLi, and water contribution, drawn from [15] and reported in Figure 11.
- Imposed temperature on the water manifolds: Because the water manifolds region is currently in a design phase and, in this configuration, does not allow the DWTs to be properly housed, a uniform temperature equal to 315 °C has been set directly derived from the thermal analysis of that poloidal COB region [9].
- Convective heat transfer between cooling water and cooling channels and DWTs: A forced convective heat transfer condition between coolant and internal surfaces of both FW-SWs cooling channels and DWTs has been imposed. In order to reproduce the coolant flow, the “thermal fluids” approach, available in the Ansys Steady-State Thermal module, has been adopted. The coolant flow direction has been properly modelled considering the counter-current flow of the cooling channels and the flow path, comprehensive of the recirculation system, of the DWTs water. Thanks to this approach, it is possible to model the fluid flowing within each channel and/or tube by means of a 1-D body, which is discretised and coupled to the nodes of the channel/tube surfaces by means of a convective boundary condition. Therefore, the fluid mass flow per unit area, the Heat Transfer Coefficient (HTC) and the bulk inlet temperature are assigned to each thermal fluid and the bulk temperature profile along the line is calculated and used for the convective boundary condition application. A first attempt value of mass flow rate, derived from [9], has been considered, and the corresponding HTC value has been calculated by means of Dittus & Boelter correlation, considering a water temperature difference (ΔT) between inlet and outlet of 33 °C. The final HTC and mass flow rate values ensuring the imposed ΔT have been calculated by means of an iterative approach. In Table 3, the values of HTC used in the last iteration are reported for the complex of cooling channels and DWTs, where HTCCC, HTCDWTs and HTCDWTs,rec indicate the HTC values used for the cooling channels, first group of DWTs and recirculation DWTs, respectively.
4.1.2. Results
4.2. The Second Update (v2) of the BC Region Design
4.2.1. The FEM Model
4.2.2. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boccaccini, L.; Arbeiter, F.; Arena, P.; Aubert, J.; Bühler, L.; Cristescu, I.; Del Nevo, A.; Eboli, M.; Forest, L.; Harrington, C.; et al. Status of maturation of critical technologies and systems design: Breeding blanket. Fusion Eng. Des. 2022, 179, 113116. [Google Scholar] [CrossRef]
- Donnè, T. European Research Roadmap to the Realisation of Fusion Energy; EUROFUSION: Garching, Germany, 2018; ISBN 9783000611520. [Google Scholar]
- Forte, R.; Arena, P.; Bongiovì, G.; Catanzaro, I.; Del Nevo, A.; Di Maio, P.; Tomarchio, E.; Vallone, E. Preliminary design of the top cap of DEMO Water-Cooled Lithium Lead breeding blanket segments. Fusion Eng. Des. 2020, 161, 111884. [Google Scholar] [CrossRef]
- Bongiovì, G.; Giambrone, S.; Catanzaro, I.; Di Maio, P.A.; Arena, P. Thermo-Mechanical Analysis and Design Update of the Top Cap Region of the DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment. Appl. Sci. 2022, 12, 1564. [Google Scholar] [CrossRef]
- Arena, P.; Del Nevo, A.; Moro, F.; Noce, S.; Mozzillo, R.; Imbriani, V.; Giannetti, F.; Edemetti, F.; Froio, A.; Savoldi, L.; et al. The DEMO Water-Cooled Lead–Lithium Breeding Blanket: Design Status at the End of the Pre-Conceptual Design Phase. Appl. Sci. 2021, 11, 11592. [Google Scholar] [CrossRef]
- Melchiorri, L.; Arena, P.; Giannetti, F.; Siriano, S.; Tassone, A. CFD Analysis and Optimization of the DEMO WCLL Central Outboard Segment Bottom-Cap Elementary Cell. J. Nucl. Eng. 2022, 3, 409–420. [Google Scholar] [CrossRef]
- AFCEN. RCC-MRx, Design and Construction Rules for Mechanical Components of Nuclear Installations; AFCEN: Paris, France, 2013. [Google Scholar]
- DEMO1 Reference Design—2017 March (“EU DEMO1 2017”)—PROCESS Two Page Output (2NE9JA v1.0) (Current). Available online: https://idm.euro-fusion.org/?uid=2NE9JA (accessed on 1 June 2023).
- Catanzaro, I.; Bongiovì, G.; Di Maio, P.A. Analysis of the Thermo-Mechanical Behaviour of the EU DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment under an Optimized Thermal Field. Appl. Sci. 2022, 12, 1356. [Google Scholar] [CrossRef]
- Gaganidze, E. Material Properties Handbook—EUROFER97; IDM Ref.: EFDA_D_2NZHBS; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Gaganidze, E.; Schoofs, F. Material Properties Handbook—Tungsten; IDM Ref.: EFDA_D_2P3SPL; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Spagnuolo, G.A.; Boccaccini, L.V.; Bongiovì, G.; Cismondi, F.; Maione, I.A. Development of load specifications for the design of the breeding blanket system. Fusion Eng. Des. 2020, 157, 111657. [Google Scholar] [CrossRef]
- Martelli, D.; Venturini, A.; Utili, M. Literature review of lead-lithium thermophysical properties. Fusion Eng. Des. 2018, 138, 183–195. [Google Scholar] [CrossRef]
- Maviglia, F. DEMO PFC Surface Heat Load Specifications; IDM Ref.: EFDA_D_2P985Q v1.8; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Arena, P. WCLL BB design activities—2022 ENEA contribution, IDM Ref.: EFDA_D_2QSA7X. Available online: https://idm.euro-fusion.org/?uid=2QSA7X (accessed on 1 June 2023).
- Maione, I.A.; Lucca, F.; Marin, A.; Bertolini, C.; Roccella, M.; Villone, F.; Del Nevo, A. Analysis of EM loads on DEMO WCLL breeding blanket during VDE-up. Fusion Eng. Des. 2018, 136, 1523–1528. [Google Scholar] [CrossRef]
- Maione, I.A.; Roccella, M.; Marin, A.; Bertolini, C.; Lucca, F. A complete EM analysis of DEMO WCLL Breeding Blanket segments during VDE-up. Fusion Eng. Des. 2019, 146, 198–202. [Google Scholar] [CrossRef]
- ITER Structural Design Criteria for In-Vessel Components (SDC-IC) Code. Available online: https://www.yumpu.com/en/document/view/17531325/iter-structural-design-criteria-for-in-vessel-components-sdc-ic (accessed on 1 June 2023).
Level D | ||||
---|---|---|---|---|
Pm/Sm | (Pm + Pb)/(Keff × Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set | |
Path AB_Cap | 0.802 | 0.786 | 0.499 | 0.170 |
Path AB_Cap2 | 0.840 | 0.823 | 0.630 | 0.194 |
Path AB_low | 1.022 | 0.697 | 0.629 | 0.203 |
Path AB1_low | 1.026 | 0.703 | 0.825 | 0.244 |
Path AB1_mid | 0.701 | 0.525 | 0.333 | 0.116 |
Path AB1_up | 0.409 | 0.306 | 0.440 | 0.163 |
Path CD_low | 0.861 | 1.085 | 0.529 | 0.169 |
Path CD1_low | 0.895 | 1.110 | 0.684 | 0.248 |
Path CD1_mid | 0.268 | 0.352 | 0.364 | 0.176 |
Path CD1_up | 0.525 | 0.573 | 0.575 | 0.215 |
Path EF_low | 0.416 | 0.749 | 0.272 | 0.144 |
Path EF1_low | 0.436 | 0.768 | 0.366 | 0.180 |
Path EF1_mid | 0.195 | 0.268 | 0.272 | 0.069 |
Path EF1_up | 0.321 | 0.344 | 0.366 | 0.145 |
Path EF2_low | 0.450 | 1.302 | 0.293 | 0.421 |
Path SPv1_low | 1.650 | 1.352 | 0.782 | 0.157 |
Path SPv1_up | 1.487 | 1.010 | 0.791 | 0.160 |
Path SPv2_low | 1.497 | 1.016 | 0.771 | 0.143 |
Path SPv2_up | 1.752 | 1.172 | 0.684 | 0.106 |
Path SPv3_low | 1.317 | 0.880 | 0.996 | 0.285 |
Path SPv3_up | 1.418 | 0.951 | 1.052 | 0.306 |
Path Cap1 | 0.443 | 1.416 | 0.390 | 0.222 |
Path Cap2 | 0.485 | 1.337 | 0.405 | 0.209 |
Path Cap3 | 0.263 | 1.062 | 0.201 | 0.143 |
Path Cap4 | 0.240 | 0.901 | 0.148 | 0.114 |
Level D | ||||
---|---|---|---|---|
Path | Pm/Sm | (Pm + Pb)/(Keff∙Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set |
AB_Cap | 0.363 | 0.267 | 0.287 | 0.090 |
AB_Cap2 | 0.336 | 0.269 | 0.331 | 0.163 |
AB_low | 1.328 | 1.020 | 0.835 | 0.213 |
AB1_low | 1.248 | 0.866 | 1.033 | 0.232 |
AB1_mid | 0.576 | 0.472 | 0.360 | 0.128 |
AB1_up | 0.314 | 0.225 | 0.362 | 0.124 |
CD_low | 0.303 | 0.830 | 0.142 | 0.308 |
CD1_low | 0.228 | 0.629 | 0.230 | 0.189 |
CD1_mid | 0.429 | 0.353 | 0.532 | 0.187 |
CD1_up | 0.501 | 0.448 | 0.611 | 0.197 |
EF_low | 0.468 | 1.143 | 0.292 | 0.218 |
EF1_low | 0.478 | 1.139 | 0.420 | 0.313 |
EF1_mid | 0.265 | 0.212 | 0.360 | 0.082 |
EF1_up | 0.307 | 0.281 | 0.402 | 0.134 |
EF2_low | 0.419 | 0.680 | 0.259 | 0.181 |
SPv1_low | 0.788 | 1.010 | 0.496 | 0.160 |
SPv1_up | 1.091 | 0.818 | 0.456 | 0.098 |
SPv2_low | 0.940 | 0.955 | 0.513 | 0.163 |
SPv2_up | 1.281 | 0.869 | 0.325 | 0.050 |
SPv3_low | 0.959 | 0.654 | 0.813 | 0.204 |
SPv3_up | 1.056 | 0.725 | 0.865 | 0.241 |
Cap1 | 0.406 | 0.765 | 0.359 | 0.149 |
Cap2 | 0.320 | 0.542 | 0.308 | 0.151 |
Cap3 | 0.209 | 0.626 | 0.172 | 0.092 |
Cap4 | 0.170 | 0.523 | 0.166 | 0.075 |
HTCCC [W/m2∙K] | HTCDWTs [W/m2∙K] | HTCDWTs,rec [W/m2∙K] |
---|---|---|
36,821.2 | 14,862.4 | 23,255.2 |
Level A | ||||
---|---|---|---|---|
Path | Pm/Sm | (Pm + Pb)/(Keff∙Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set |
Cap1 | 0.075 | 0.145 | 0.834 | 0.177 |
Cap2 | 0.064 | 0.088 | 0.554 | 0.101 |
Cap3 | 0.068 | 0.127 | 0.590 | 0.112 |
AB_Cap1 | 0.063 | 0.073 | 1.184 | 0.672 |
AB_Cap2 | 0.073 | 0.061 | 1.084 | 0.698 |
AB_A1 | 0.098 | 0.072 | 0.459 | 0.742 |
AB_A2 | 0.100 | 0.076 | 1.003 | 0.598 |
AB_B1 | 0.143 | 0.100 | 0.403 | 0.817 |
AB_B2 | 0.114 | 0.087 | 1.075 | 0.569 |
AB_C1 | 0.085 | 0.071 | 0.966 | 0.741 |
AB_C2 | 0.061 | 0.046 | 1.259 | 0.589 |
CD_A1 | 0.064 | 0.060 | 0.213 | 0.148 |
CD_A2 | 0.108 | 0.073 | 0.537 | 0.169 |
CD_B1 | 0.033 | 0.055 | 0.361 | 0.168 |
CD_B2 | 0.105 | 0.074 | 0.439 | 0.127 |
CD_C1 | 0.153 | 0.160 | 0.431 | 0.188 |
CD_C2 | 0.075 | 0.069 | 0.508 | 0.181 |
EF_A1 | 0.056 | 0.051 | 0.121 | 0.810 |
EF_A2 | 0.070 | 0.069 | 0.244 | 0.647 |
EF_B1 | 0.035 | 0.053 | 0.162 | 0.833 |
EF_B2 | 0.063 | 0.061 | 0.227 | 0.632 |
EF_C1 | 0.089 | 0.167 | 0.363 | 0.794 |
EF_C2 | 0.064 | 0.054 | 0.323 | 0.613 |
Level D | ||||
---|---|---|---|---|
Path | Pm/Sm | (Pm + Pb)/(Keff∙Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set |
Cap1 | 0.253 | 0.486 | 0.536 | 0.141 |
Cap2 | 0.204 | 0.440 | 0.319 | 0.100 |
Cap3 | 0.312 | 0.490 | 0.383 | 0.107 |
AB_Cap1 | 0.443 | 0.703 | 0.846 | 0.435 |
AB_Cap2 | 0.242 | 0.292 | 0.718 | 0.446 |
AB_A1 | 0.473 | 0.405 | 0.206 | 0.581 |
AB_A2 | 0.439 | 0.370 | 0.396 | 0.419 |
AB_B1 | 0.518 | 0.383 | 0.222 | 0.640 |
AB_B2 | 0.436 | 0.352 | 0.460 | 0.398 |
AB_C1 | 0.363 | 0.555 | 0.719 | 0.490 |
AB_C2 | 0.217 | 0.212 | 0.725 | 0.370 |
CD_A1 | 0.340 | 0.283 | 0.273 | 0.164 |
CD_A2 | 0.436 | 0.322 | 0.369 | 0.146 |
CD_B1 | 0.286 | 0.280 | 0.261 | 0.171 |
CD_B2 | 0.398 | 0.306 | 0.314 | 0.098 |
CD_C1 | 0.630 | 0.552 | 0.456 | 0.149 |
CD_C2 | 0.226 | 0.197 | 0.297 | 0.119 |
EF_A1 | 0.267 | 0.196 | 0.199 | 0.647 |
EF_A2 | 0.315 | 0.366 | 0.166 | 0.484 |
EF_B1 | 0.230 | 0.190 | 0.184 | 0.661 |
EF_B2 | 0.290 | 0.336 | 0.148 | 0.467 |
EF_C1 | 0.464 | 0.753 | 0.376 | 0.517 |
EF_C2 | 0.153 | 0.214 | 0.155 | 0.419 |
Level A | ||||
---|---|---|---|---|
Path | Pm/Sm | (Pm + Pb)/(Keff∙Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set |
SPh1_A | 0.098 | 0.096 | 1.059 | 0.258 |
SPh1_B | 0.029 | 0.092 | 1.099 | 0.245 |
SPh2_A | 0.045 | 0.037 | 0.758 | 0.151 |
SPh2_B | 0.049 | 0.043 | 0.918 | 0.165 |
SPv1_A | 0.144 | 0.098 | 0.326 | 0.079 |
SPv1_B | 0.144 | 0.097 | 0.505 | 0.121 |
SPv1_C | 0.435 | 0.296 | 0.814 | 0.183 |
SPv2_A | 0.140 | 0.095 | 0.622 | 0.110 |
SPv2_B | 0.155 | 0.104 | 0.535 | 0.094 |
SPv2_C | 0.160 | 0.117 | 0.362 | 0.076 |
SPv3_A | 0.049 | 0.035 | 0.497 | 0.103 |
SPv3_B | 0.068 | 0.050 | 0.470 | 0.095 |
SPv3_C | 0.211 | 0.299 | 0.211 | 0.062 |
Level D | ||||
---|---|---|---|---|
Path | Pm/Sm | (Pm + Pb)/(Keff∙Sm) | (Pm + Qm)/Sem | (Pm + Pb + Q + F)/Set |
SPh1_A | 0.945 | 0.836 | 1.226 | 0.392 |
SPh1_B | 0.923 | 0.912 | 1.222 | 0.340 |
SPh2_A | 0.587 | 0.418 | 0.718 | 0.156 |
SPh2_B | 0.665 | 0.478 | 0.804 | 0.152 |
SPv1_A | 0.974 | 0.651 | 0.775 | 0.223 |
SPv1_B | 1.026 | 0.685 | 0.918 | 0.263 |
SPv1_C | 1.404 | 0.950 | 1.162 | 0.294 |
SPv2_A | 1.080 | 0.730 | 0.266 | 0.049 |
SPv2_B | 1.153 | 0.783 | 0.347 | 0.064 |
SPv2_C | 1.059 | 0.760 | 0.480 | 0.092 |
SPv3_A | 0.928 | 0.681 | 0.234 | 0.062 |
SPv3_B | 0.982 | 0.681 | 0.291 | 0.062 |
SPv3_C | 1.358 | 1.286 | 0.759 | 0.181 |
Level D | SPv1_C | SPv1_Cave | Var. [%] | |
Pm/Sm | 1.226 | 1.141 | −7.48% | |
(Pm + Pb)/(Keff∙Sm) | 0.843 | 0.770 | −9.49% | |
(Pm + Qm)/Sem | 1.038 | 0.957 | −8.42% | |
SPv2_C | SPv2_Cave | Var. [%] | ||
Pm/Sm | 0.925 | 0.857 | −7.86% | |
(Pm + Pb)/(Keff∙Sm) | 0.653 | 0.590 | −10.63% | |
(Pm + Qm)/Sem | 0.424 | 0.354 | −19.74% | |
SPv3_C | SPv3_Cave | Var. [%] | ||
Pm/Sm | 1.174 | 1.123 | −4.56% | |
(Pm + Pb)/(Keff∙Sm) | 1.131 | 1.006 | −12.41% | |
(Pm + Qm)/Sem | 0.660 | 0.612 | −7.86% |
Level A | AB_Cap1 | AB_Cap1ave | Var. [%] | |
(Pm + Qm)/Sem | 1.140 | 1.153 | 1.07% | |
AB_Cap2 | AB_Cap2ave | Var. [%] | ||
(Pm + Qm)/Sem | 1.047 | 1.041 | −0.55% | |
AB_C1 | AB_C1ave | Var. [%] | ||
(Pm + Qm)/Sem | 0.923 | 0.939 | 1.66% | |
AB_C2 | AB_C2ave | Var. [%] | ||
(Pm + Qm)/Sem | 1.211 | 1.223 | 1.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bongiovì, G.; Catanzaro, I.; Di Maio, P.A.; Giambrone, S.; Gioè, A.; Arena, P.; Melchiorri, L. Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment. Appl. Sci. 2023, 13, 9812. https://doi.org/10.3390/app13179812
Bongiovì G, Catanzaro I, Di Maio PA, Giambrone S, Gioè A, Arena P, Melchiorri L. Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment. Applied Sciences. 2023; 13(17):9812. https://doi.org/10.3390/app13179812
Chicago/Turabian StyleBongiovì, Gaetano, Ilenia Catanzaro, Pietro Alessandro Di Maio, Salvatore Giambrone, Alberto Gioè, Pietro Arena, and Lorenzo Melchiorri. 2023. "Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment" Applied Sciences 13, no. 17: 9812. https://doi.org/10.3390/app13179812
APA StyleBongiovì, G., Catanzaro, I., Di Maio, P. A., Giambrone, S., Gioè, A., Arena, P., & Melchiorri, L. (2023). Exploratory Thermo-Mechanical Assessment of the Bottom Cap Region of the EU DEMO Water-Cooled Lead Lithium Central Outboard Blanket Segment. Applied Sciences, 13(17), 9812. https://doi.org/10.3390/app13179812