Examining the Influence of Ultrasounds and the Addition of Arrowroot on the Physicochemical Properties of Ice Cream
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Ice Cream
2.2. Analysis of Chemical Composition
2.3. Analysis of Total Phenolics Content and Antioxidant Potential
2.4. Physical Analyses of Ice Cream
2.5. Microstructure
2.6. X-ray Diffraction Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Chemical Properties of Ice Cream
3.2. Total Phenolics Content and Antioxidant Potential of Ice Cream
3.3. Physical Properties of Ice Cream
3.4. X-ray Diffraction
3.5. Microstructural of Ice Cream
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clarke, C. The Science of Ice Cream; RSC Published: Cambridge, UK, 2012. [Google Scholar]
- Goff, H.D.; Hartel, R.W. Ice Cream; Springer Science: New York, NY, USA, 2013. [Google Scholar]
- The A–Z for Perfect Chocolate Ice Cream. Available online: https://www.callebaut.com/sites/callebaut2019/files/files/14-9375%20CAL%20Ice%20cream%20compendium%20EN_v11_singlepage_LR_0.pdf (accessed on 17 August 2023).
- Majid, I.; Nayik, G.A.; Nanda, V. Ultrasonication and food technology: A review. Cogent Food Agric. 2015, 1, 1071022. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, D.W. Innovative applications of power ultrasound during food freezing processes—A review. Trends Food Sci. Technol. 2006, 17, 16–23. [Google Scholar] [CrossRef]
- Bhargava, N.; Mora, R.S.; Kumarb, K.; Sharanagata, V.S. Advances in application of ultrasound in food processing: A review. Ultrason. Sonochem. 2021, 70, 105293. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, J.; Arellano, M.; Pichot, R.; Norton, I. The effect of ultrasound treatment on the structural, physical and emulsifying properties of dairy proteins. Food Hydrocoll. 2014, 42, 386–396. [Google Scholar] [CrossRef]
- Carpenter, J.; Saharan, V.K. Ultrasonic assisted formation and stability of mustard oil in water nanoemulsion: Effect of process parameters and their optimization. Ultrason. Sonochem. 2017, 35, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.A.; Fonteles, T.V.; Rodrigues, S.; Brito, E.S.; Tiwari, B.K. Ultrasound assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: Kinetics and mathematical modeling. J. Food Sci. Technol. 2020, 57, 2321–2328. [Google Scholar] [CrossRef]
- Chavan, P.; Sharma, P.; Sharma, S.R.; Mittal, T.C.; Jaiswal, A.K. Application of high-intensity ultrasound to improve food processing efficiency: A Review. Foods 2022, 11, 122. [Google Scholar] [CrossRef]
- Mortazavi, A.; Tabatabaie, F. Study of ice cream freezing process after treatment with ultrasound. World Appl. Sci. J. 2008, 4, 188–190. [Google Scholar]
- Türker, D.A.; Dogan, M. Effects of ultrasound homogenization on the structural and sensorial attributes of ice cream: Optimization with Taguchi and data envelopment analysis. J. Food Meas. Charact. 2021, 15, 4888–4898. [Google Scholar] [CrossRef]
- Kenari, R.E.; Razavi, R. Effect of sonication conditions: Time, temperature and amplitude on physicochemical, textural and sensory properties of yoghurt. Int. J. Dairy Technol. 2021, 74, 332–343. [Google Scholar] [CrossRef]
- Erfanian, A.; Rasti, B. Effects of sonication condition on milk-soymilk yogurt properties. Int. Food Res. J. 2019, 26, 1823–1834. [Google Scholar]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyng, J.G. A comparison of selected quality characteristics of yoghurts prepared from thermosonicated and conventionally heated milks. Food Chem. 2010, 119, 1108–1113. [Google Scholar] [CrossRef]
- Chandrapala, J.; Ong, L.; Zisu, B.; Gras, S.L.; Ashokkumar, M.; Kentish, S.E. The effect of sonication and high pressure homogenisation on the properties of pure cream. Innov. Food Sci. Emerg. Technol. 2016, 33, 298–307. [Google Scholar] [CrossRef]
- Kot, A.; Kamińska-Dwórznicka, A.; Jakubczyk, E. Study on the influence of ultrasound homogenisation on the physical properties of vegan ice cream mixes. Appl. Sci. 2022, 12, 8492. [Google Scholar] [CrossRef]
- Thilakarathna, R.; Madhusankha, G. Impact of ultra-sonication on gelation process in dairy products incorporated with polysaccharides. Food Nutr. Sci. 2020, 11, 327–335. [Google Scholar] [CrossRef]
- Akdeniz, V.; Akalın, A.S. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends Food Sci. Technol. 2019, 86, 392–398. [Google Scholar] [CrossRef]
- Aslan, D.; Dogan, M. The influence of ultrasound on the stability of dairy- based, emulsifier-free emulsions: Rheological and morphological aspect. Eur. Food Res. Technol. 2018, 244, 409–421. [Google Scholar] [CrossRef]
- Kamińska-Dwórznicka, A.; Łaba, S.; Jakubczyk, E. The effects of selected stabilizers addition on physical properties and changes in crystal structure of whey ice cream. LWT 2022, 154, 112841. [Google Scholar] [CrossRef]
- Romulo, A.; Meindrawan, B.; Marpietylie. Effect of Dairy and Non-Dairy Ingredients on the Physical Characteristic of Ice Cream: Review. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 794, p. 012145. [Google Scholar] [CrossRef]
- Masselot, V.; Bosc, V.; Benkhelifa, H. Influence of stabilizers on the microstructure of fresh sorbets: X-ray micro-computed tomography, cryo-SEM, and focused beam reflectance measurement analyses. J. Food Eng. 2021, 300, 110522. [Google Scholar] [CrossRef]
- Mehditabar, H.; Seyed, M.A.; Razavi, S.M.A.; Javidi, F. Influence of pumpkin puree and guar gum on the bioactive, rheological, thermal and sensory properties of ice cream. Int. J. Dairy Technol. 2020, 73, 447–458. [Google Scholar] [CrossRef]
- Kurt, A.; Cengiz, A.; Kahyaoglu, T. The effect of gum tragacanth on the rheological properties of salep based ice cream mix. Carbohydr. Polym. 2016, 143, 116–123. [Google Scholar] [CrossRef]
- Motyl, W.; Dziugan, P.; Motyl, I.; Jóźwiak, A.; Nowak, S. Functional ice cream with a “clean label”. Biotechnol. Food Sci. 2019, 83, 121–134. [Google Scholar] [CrossRef]
- Feizi, R.; Goh, K.K.T.; Mutukumira, A.N. Effect of chia seed mucilage as stabilizer in ice cream. Int. Dairy J. 2021, 120, 105087. [Google Scholar] [CrossRef]
- Ṻrker, B. Effect of using chia seed power on physicochemical, rheological, thermal, and texture properties of ice cream. J. Food Process. Preserv. 2021, 45, 15418. [Google Scholar] [CrossRef]
- El-Aziz, M.A.; Haggag, H.F.; Kaluoubi, M.M.; Hassan, L.; El-sayed, M.M.; Sayed, A. Physical properties of ice cream containing cress seed and flaxseed mucilages compared with commercial guar gum. Int. J. Dairy Sci. 2015, 10, 160–172. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Dağdemir, E.A. Preliminary study on functionality of Gundelia tournefortii L. as a new stabilizer in ice cream production. Int. J. Dairy Technol. 2013, 66, 431–436. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.-X.; Wu, S. Study on the natto extract polysaccharide as a new ice cream stabilizer. Int. J. Agric. Sci. Res. 2018, 7, 10–17. [Google Scholar]
- Bahram-Parvar, M.; Razavi, S.; Tehrani, M. Optimising the ice cream formulation using basil seed gum (Ocimum basilicum L.) as a novel stabilizer to deliver improved processing quality. Int. J. Food Sci. Technol. 2012, 47, 2655–2661. [Google Scholar] [CrossRef]
- Jayakumar, A.; Suganthi, A. Biochemical and phytochemical analysis of Maranta arundinacea (L.) Rhizome. Int. J. Res. Pharm. Pharm. Sci. 2017, 2, 26–30. [Google Scholar]
- Nagargoje, K.D.; Bhambure, C.V.; Bhamare, N.C.; Ranveer, R.C.; Joshi, S.V. Use of arrowroot (Maranta arundinacea L.) powder as a partial replacement of SNF in ice cream. Asian J. Anim. Sci. 2009, 4, 102–104. [Google Scholar]
- Xu, J.; Bai, M.; Song, H.; Yang, L.; Zhu, D.; Liu, H. Hemp (Cannabis sativa subsp. sativa) chemical composition and the application of hemp seeds in food formulations. Plant Foods Hum. Nutr. 2022, 77, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Spano, M.; Di Matteo, G.; Rapa, M.; Ciano, S.; Ingallina, C.; Cesa, S.; Menghini, L.; Carradori, S.; Giusti, A.M.; Di Sotto, A.; et al. Commercial hemp seed oils: A multimethodological characterization. Appl. Sci. 2020, 10, 6933. [Google Scholar] [CrossRef]
- Yu, L.L.; Zhou, K.K.; Parry, J. Antioxidant properties of cold-pressed black caraway, carrot, cranberry, and hemp seed oils. Food Chem. 2005, 91, 723–729. [Google Scholar] [CrossRef]
- Mikulcová, V.; Kašpárková, V.; Humpolíček, P.; Buňková, L. Formulation, characterization and properties of hemp seed oil and its emulsions. Molecules 2017, 22, 700. [Google Scholar] [CrossRef]
- Lakatos, M.; Obeng Apori, S.; Dunne, J.; Tian, F. The biological activity of tea tree oil and hemp seed oil. Appl. Microbiol. 2022, 2, 534–543. [Google Scholar] [CrossRef]
- Opinion of the Food Safety and Nutrition Commission at the Chief Sanitary Inspector on the Safety of Hemp in Food Due to the Presence of THC and CBD of May 27, 2019. Available online: https://skslegal.pl/en/report-sks-cbd-products-in-poland/ (accessed on 31 May 2023).
- Kozłowicz, K.; Nazarewicz, S.; Różyło, R.; Nastaj, M.; Parafiniuk, S.; Śmigielski, M.; Bieńczak, A.; Kozłowicz, N. The use of moldavian dragonhead bagasse in shaping the thermophysical and physicochemical properties of ice cream. Appl. Sci. 2021, 11, 8598. [Google Scholar] [CrossRef]
- Rahman, M.S.; Guizani, N.; Al-Khaseibi, M.; Al-Hinai, S.A.; Al-Maskri, S.S.; Al-Ramhami, K. Analysis of cooling curve to determine the end point of freezing. Food Hydrocoll. 2002, 16, 653–659. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International, 17th ed.; Association of Analytical Communities: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Jain, A.; Jain, R.; Jain, S. Quantitative Analysis of Reducing Sugars by 3, 5-Dinitrosalicylic Acid (DNSA Method). In Basic Techniques in Biochemistry, Microbiology and Molecular Biology; Springer Protocols Handbooks; Humana: New York, NY, USA, 2020. [Google Scholar]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Bochnak, J.; Świeca, M. Potentially bioaccessible phenolics, antioxidant capacities and the colour of carrot, pumpkin and apple powders—Effect of drying temperature and sample structure. Int. J. Food Sci. Technol. 2020, 55, 136–145. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Pulido, R.; Bravo, L.; Saura-Calixto, F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 2000, 48, 3396–3402. [Google Scholar] [CrossRef]
- Pellegrini, R.R.N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Gawlik-Dziki, U.; Dziki, D.; Świeca, M.; Sȩczyk, Ł.; Różyło, R.; Szymanowska, U. Bread enriched with Chenopodium quinoa leaves powder—The procedures for assessing the fortification efficiency. LWT-Food Sci. Technol. 2015, 62, 1226–1234. [Google Scholar] [CrossRef]
- Akbari, M.; Eskandari, M.H.; Niakosari, M.; Bedeltavana, A. The effect of inulin on the physicochemical properties and sensory attributes of low-fat ice cream. Int. Dairy J. 2016, 57, 52–55. [Google Scholar] [CrossRef]
- Güven, M.; Karaca, O.B. The effect of varying sugar content and fruit concentration on the physical properties of vanilla and fruit ice-cream-type frozen yogurts. Int. J. Dairy Technol. 2002, 55, 27–31. [Google Scholar] [CrossRef]
- Tiwari, A.; Sharma, H.K.; Kumar, N.; Kaur, M. The effect of inulin as a fat replacer on the quality of low-fat ice cream. Int. J. Dairy Technol. 2015, 68, 374–380. [Google Scholar] [CrossRef]
- Skrzypek, T.; Kazimierczak, W.; Zięba, E.; Olszewski, J.; Ferenc, K.; Zabielski, R. Chapter 2—How to Get a Proper 2D and 3D Image? In Atlas of the Pig Gut, Research and Techniques from Birth to Adulthood; Zabielski, R., Skrzypek, T., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 3–36. [Google Scholar] [CrossRef]
- Góral, M.; Kozłowicz, K.; Pankiewicz, U.; Góral, D.; Kluza, F.; Wójtowicz, A. Impact of stabilizers on the freezing process, and physicochemical and organoleptic properties of coconut milk-based ice cream. Lebensm.-Wiss. Technol. 2018, 92, 516–522. [Google Scholar] [CrossRef]
- Silva Junior, E.; Silva Lanne, S.C. Effect of different sweetener blends and fat types on ice cream properties. Food Sci. Technol. 2011, 31, 217–220. [Google Scholar] [CrossRef]
- Nazarewicz, S.; Kozłowicz, K.; Kobus, Z.; Gładyszewska, B.; Matwijczuk, A.; Ślusarczyk, L.; Skrzypek, T.; Sujka, M.; Kozłowicz, N. The use of ultrasound in shaping the properties of ice cream with oleogel based on oil extracted from tomato seeds. Appl. Sci. 2022, 12, 9165. [Google Scholar] [CrossRef]
- Abesinghe, A.M.N.L.; Vidanarachchi, J.K.; Islam, N.; Prakash, S.; Silva, K.F.S.T.; Bhandari, B.; Karim, M.A. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: A comparison with shear-homogenization. Innov. Food Sci. Emerg. Technol. 2020, 59, 102237. [Google Scholar] [CrossRef]
- Shanmugam, A.; Ashokkumar, M. Functional properties of ultrasonically generated flaxseed oil-dairy emulsions. Ultrason. Sonochem. 2014, 21, 1649–1657. [Google Scholar] [CrossRef]
- Carrillo-Lopez, L.M.; Garcia-Galicia, I.A.; Tirado-Gallegos, J.M.; Sanchez-Vega, R.; Huerta-Jimenez, M.; Ashokkumar, M.; Alarcon-Rojo, A.D. Recent advances in the application of ultrasound in dairy products: Effect on functional, physical, chemical, microbiological and sensory properties. Ultrason. Sonochem. 2021, 73, 105467. [Google Scholar] [CrossRef] [PubMed]
- Karlović, S.; Bosiljkov, T.; Brnčić, M.; Semenski, D.; Dujmić, F.; Tripalo, B.; Jeżek, D. Reducing fat globules particle-size in goat milk: Ultrasound and high hydrostatic pressures approach. Chem. Biochem. Eng. Q. 2015, 28, 499–507. [Google Scholar] [CrossRef]
- Lanzoni, D.; Skřivanová, E.; Rebucci, R.; Crotti, A.; Baldi, A.; Marchetti, L.; Giromini, C. Total phenolic content and antioxidant activity of in vitro digested hemp-based products. Foods 2023, 12, 601. [Google Scholar] [CrossRef] [PubMed]
- Bottani, M.; Cattaneo, S.; Pica, V.; Stuknytė, M.; De Noni, I.; Ferraretto, A. In vitro antioxidant properties of digests of hydrolyzed casein and caseinophosphopeptide preparations in cell models of human intestine and osteoblasts. J. Funct. Foods 2020, 64, 103673. [Google Scholar] [CrossRef]
- Wang, X.S.; Tang, C.H.; Chen, L.; Yang, X.Q. Characterization and antioxidant properties of hemp protein hydrolysates obtained with Neutrase®. Food Technol. Biotechnol. 2009, 47, 428–434. [Google Scholar]
- Lucas-González, R.; Viuda-Martos, M.; Pérez Álvarez, J.A.; Fernández-López, J. Changes in bioaccessibility, polyphenol profile and antioxidant potential of flours obtained from persimmon fruit (Diospyros kaki) co-products during in vitro gastrointestinal digestion. Food Chem. 2018, 1, 252–258. [Google Scholar] [CrossRef]
- El-Said, M.M.; El-Messery, T.M.; Salama, H.H. Functional Properties and in vitro Bio-Accessibility Attributes of Light Ice Cream Incorporated with Purple Rice Bran. Int. J. Dairy Sci. 2021, 16, 1–10. [Google Scholar] [CrossRef]
- Moriano, M.E.; Alamprese, C. Honey, trehalose and erythritol as sucrose-alternative sweeteners for artisanal ice cream. A pilot study. LWT-Food Sci. Technol. 2017, 75, 329–334. [Google Scholar] [CrossRef]
- Campos, B.; Ruivo, T.; da Silva, M.; Madrona, G.; Bergamasco, R. Optimization of the mucilage extraction process from chia seeds and application in ice cream as a stabilizer and emulsifier. LWT-Food Sci. Technol. 2016, 65, 874–883. [Google Scholar] [CrossRef]
- Lozano, E.; Padilla, K.; Salcedo, J.; Arrieta, A.; Andrade-Pizarro, R. Effects of yam (Dioscorea rotundata) mucilage on the physical, rheological and stability characteristics of ice cream. Polymers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Javidi, F.; Razavi, S.M.; Behrouzian, F.; Alghooneh, A. The influence of basil seed gum, guar gum and their blend on the rheological, physical and sensory properties of low fat ice cream. Food Hydrocoll. 2016, 52, 625–633. [Google Scholar] [CrossRef]
- Deshpande, V.K.; Walsh, M.K. Effect of sonication on the viscosity of reconstituted skim milk powder and milk protein concentrate as influenced by solids concentration, temperature and sonication. Int. Dairy J. 2018, 78, 122–129. [Google Scholar] [CrossRef]
- Zisu, B.; Schleyer, M.; Chandrapala, J. Application of ultrasound to reduce viscosity and control the rate of age thickening of concentrated skim milk. Int. Dairy J. 2013, 31, 41–43. [Google Scholar] [CrossRef]
- Valencia, G.A.; Moraes, I.C.; Lourenço, R.V.; Bittante, B.; do Amaral Sobral, P.J. Physicochemical properties of maranta (Maranta arundinacea L.) starch. Int. J. Food Prop. 2015, 18, 1990–2001. [Google Scholar] [CrossRef]
- Karthik, M.; Faik, A.; Blanco-Rodríguez, P.; Rodríguez-Aseguinolaza, J.; D’Aguanno, B. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon 2015, 94, 266–276. [Google Scholar] [CrossRef]
- Bermúdez-Aguirre, D.; Mawson, R.; Versteeg, K.; Barboson-Cánovas, G.V. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments. J. Food Qual. 2009, 32, 283–302. [Google Scholar] [CrossRef]
- Riener, J.; Noci, F.; Cronin, D.A.; Morgan, D.J.; Lyn, G. The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chem. 2009, 114, 905–911. [Google Scholar] [CrossRef]
Ingredients | Composition (g⋅(100 g)−1, w/w) | |||||
---|---|---|---|---|---|---|
5SP | 5SU | 5MP | 6MP | 5MU | 6MU | |
Whole milk (Lactose-free) (Mlekovita, Poland) | 53.0 | 53.0 | 51.0 | 51.0 | 51.0 | 51.0 |
30% cream (Lactose-free) (Mlekovita, Poland) | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 | 11.0 |
Skimmed milk powder (Lactose-free) (Mlekovita, Poland) | 18.0 | 18.0 | 18.0 | 17.0 | 18.0 | 17.0 |
Hemp seed oil | 5.0 | 5.0 | 5.0 | 6.0 | 5.0 | 6.0 |
Erythritol (Agnex, China) | 12.5 | 12.5 | 10.5 | 10.5 | 10.5 | 10.5 |
Arrowroot (Market Bio, Awrott, India) | − | − | 4.0 | 4.0 | 4.0 | 4.0 |
Emulsifier E 471 (Fooding, Shanghai, China) | 0.2 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 |
Stabilizer (CMC + GG) (Agnex, Bialystok, Poland) | 0.3 | 0.3 | − | − | − | − |
Properties | 5SP | 5MP | 6MP | 5SU | 5MU | 6MU |
---|---|---|---|---|---|---|
Total solid [%] | 45.75 c ± 0.42 | 48.91 a ± 0.23 | 48.39 a ± 0.29 | 45.75 c ± 0.09 | 46.59 c ± 0.26 | 47.17 b ± 0.36 |
Protein [g·(100 g)−1] | 16.99 d ± 0.06 | 17.57 a ± 0.09 | 15.92 f ± 0.05 | 17.39 b ± 0.06 | 17.18 c ± 0.05 | 16.26 e ± 0.03 |
Fat [g·(100 g)−1] | 15.84 b ± 1.52 | 17.67 ab ±1.11 | 18.73 a ± 0.44 | 6.60 d ± 0.33 | 8.26 cd ± 0.44 | 9.43 c ± 0.28 |
Free reducing sugars [%] | 3.66 d ± 0.10 | 4.00 bc ± 0.11 | 3.98 c ± 0.00 | 3.76 d ± 0.11 | 4.37 a ± 0.03 | 4.15 b ± 0.06 |
Properties | 5SP | 5MP | 6MP | 5SU | 5MU | 6MU |
---|---|---|---|---|---|---|
Freezing point [°C] | −9.0 ab ± 0.50 | −9.8 c ± 0.29 | −9.5 bc ± 0.0 | −8.8 ab ± 0.29 | −8.5 a ± 0.0 | −9.0 ab ± 0.0 |
Overrun [%] | 37.95 d ± 0.38 | 63.80 c ± 5.31 | 72.45 b ± 2.54 | 28.11 e ± 1.20 | 80.54 a ± 0.93 | 87.02 a ± 0.61 |
Complete melting time [min] | 20.06 cd ± 0.46 | 18.78 e ± 0.20 | 19.29 de ± 0.56 | 37.48 a ± 0.01 | 20.66 c ± 0.60 | 22.44 b ± 0.01 |
Hardness [N] | 38.37 b ± 0.64 | 30.33 c ± 2.45 | 31.29 c ± 2.54 | 45.56 a ± 2.34 | 29.15 c ± 0.78 | 19.97 d ± 1.08 |
Adhesiveness [N·s] | −29.50 a ± 3.88 | −62.18 c ± 1.59 | −47.99 b ± 1.68 | −42.65 b ± 1.16 | −63.85 c ± 1.41 | −91.30 d ± 1.51 |
Apparent viscosity [mPa∙s] | 544.4 b ± 1.5 | 313.6 c ± 4,8 | 203.6 d ± 4.3 | 692.9 a ± 0.2 | 166.1 e ± 3.1 | 169.1 e ± 6.9 |
pH | 6.42 a ± 0.03 | 6.18 bc ± 0.06 | 6.13 c ± 0.07 | 6.30 abc ± 0.02 | 6.35 a ± 0.03 | 6.32 ab ± 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowicz, K.; Krajewska, M.; Nazarewicz, S.; Gładyszewski, G.; Chocyk, D.; Świeca, M.; Dziki, D.; Kobus, Z.; Parafiniuk, S.; Przywara, A.; et al. Examining the Influence of Ultrasounds and the Addition of Arrowroot on the Physicochemical Properties of Ice Cream. Appl. Sci. 2023, 13, 9816. https://doi.org/10.3390/app13179816
Kozłowicz K, Krajewska M, Nazarewicz S, Gładyszewski G, Chocyk D, Świeca M, Dziki D, Kobus Z, Parafiniuk S, Przywara A, et al. Examining the Influence of Ultrasounds and the Addition of Arrowroot on the Physicochemical Properties of Ice Cream. Applied Sciences. 2023; 13(17):9816. https://doi.org/10.3390/app13179816
Chicago/Turabian StyleKozłowicz, Katarzyna, Marta Krajewska, Sybilla Nazarewicz, Grzegorz Gładyszewski, Dariusz Chocyk, Michał Świeca, Dariusz Dziki, Zbigniew Kobus, Stanisław Parafiniuk, Artur Przywara, and et al. 2023. "Examining the Influence of Ultrasounds and the Addition of Arrowroot on the Physicochemical Properties of Ice Cream" Applied Sciences 13, no. 17: 9816. https://doi.org/10.3390/app13179816
APA StyleKozłowicz, K., Krajewska, M., Nazarewicz, S., Gładyszewski, G., Chocyk, D., Świeca, M., Dziki, D., Kobus, Z., Parafiniuk, S., Przywara, A., & Kachel, M. (2023). Examining the Influence of Ultrasounds and the Addition of Arrowroot on the Physicochemical Properties of Ice Cream. Applied Sciences, 13(17), 9816. https://doi.org/10.3390/app13179816