Establishing Benchmark Percentiles for the Classification of Body Fat Percentage of Professional Male Athletes Competing in Combat Sports through Bioimpedanciometry
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Procedures
2.2. Body Composition Assessment
2.3. Statistical Analysis
3. Results
4. Discussion
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Classification | Body Fat Percentage | Muscle-to-Fat Ratio | Classification |
---|---|---|---|
Too low | <5% | ≤2 | Insufficient |
Lean | 5–9% | 2.1–3.39 | Too small |
Optimal | 10–14% | 3.4–4.69 | Moderate |
Acceptable | 15–19% | 4.7–6 | Extensive |
Excessive | 20–24% | >6 | Maximum |
References
- Ackland, T.R.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.D.; Müller, W. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the IOC Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef]
- Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556. [Google Scholar] [CrossRef]
- Harvey, I.; Boudreau, A.; Stephens, J.M. Adipose tissue in health and disease. Open Biol. 2020, 10, 200291. [Google Scholar] [CrossRef]
- Sundgot-Borgen, J.; Meyer, N.L.; Lohman, T.G.; Ackland, T.R.; Maughan, R.J.; Stewart, A.D.; Müller, W. How to minimize the health risks to athletes who compete in weight-sensitive sports review and position statement on behalf of the Ad Hoc Research Working Group on Body Composition, Health and Performance, under the auspices of the IOC Medical Commission. Br. J. Sports Med. 2013, 47, 1012–1022. [Google Scholar] [CrossRef] [PubMed]
- Gabbett, T.J. Science of rugby league football: A review. J. Sports Sci. 2005, 23, 961–976. [Google Scholar] [CrossRef] [PubMed]
- Guh, D.P.; Zhang, W.; Bansback, N.; Amarsi, Z.; Birmingham, C.L.; Anis, A.H. The incidence of comorbidities related to obesity and overweight: A systematic review and meta-analysis. BMC Public Health 2009, 9, 88. [Google Scholar] [CrossRef]
- Kasper, A.M.; Langan-Evans, C.; Hudson, J.F.; Brownlee, T.E.; Harper, L.D.; Naughton, R.J.; Morton, J.P.; Close, G.L. Come back skinfolds, all is forgiven: A narrative review of the efficacy of common body composition methods in applied sports practice. Nutrients 2021, 3, 1075. [Google Scholar] [CrossRef] [PubMed]
- Andreato, L.V.; Lara, F.J.D.; Andrade, A.; Branco, B.H.M. Physical and physiological profiles of Brazilian Jiu-Jitsu athletes: A systematic review. Sports Med. Open 2017, 3, 9. [Google Scholar] [CrossRef]
- Skernevičius, J.; Milašius, K.; Raslanas, A.; Dadelienė, R. Fitness training. In Athlete Skills and Training Them, 1st ed.; Čepulėnas, A., Saplinskas, J., Paulauskas, R., Eds.; Lithuanian University of Educational Sciences Press: Vilnius, Lithuania, 2011; pp. 165–217. [Google Scholar]
- Silva, M.R.; Paiva, T. Low energy availability and low body fat of female gymnasts before an international competition. Eur. J. Sport Sci. 2015, 15, 591–599. [Google Scholar] [CrossRef]
- Franchini, E.; Nunes, A.V.; Moraes, J.M.; Del Vecchio, F.B. Physical fitness and anthropometrical profile of the Brazilian male judo team. J. Physiol. Anthropol. 2007, 26, 59–67. [Google Scholar] [CrossRef]
- Franchini, E.; Takito, M.Y.; Bertuzzi, R.C. Morphological, physiological and technical variables in high-level college judoists. Arch. Budo 2005, 1, 1–7. [Google Scholar]
- Athayde, M.S.S.; Detanico, D.; Kons, R.L. Influence of body fat on countermovement jump performance in judo athletes from different weight categories. Rev. Bras. Educ. Fis. Esporte 2018, 31, 345–353. [Google Scholar] [CrossRef]
- Kubo, J.; Chishaki, T.; Nakamura, N.; Muramatsu, T.; Yamamoto, Y.; Ito, M.; Saitou, H.; Kukidome, T. Differences in fat-free mass and muscle thicknesses at various sites according to performance level among judo athletes. J. Strength Cond. Res. 2006, 20, 654–657. [Google Scholar]
- Syed-Abdul, M.M.; Dhwani, S.; Jason, D.W. Effects of self-implemented carbohydrate cycling and moderate to high intensity resistance exercise on body fat in body builders. Gazz. Med. Ital. Archivio Sci. Med. 2019, 178, 221–224. [Google Scholar] [CrossRef]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, H.L.; Sinning, W.E. The anthropometric estimation of body density and lean body weight of male athletes. Med. Sci. Sports 1973, 5, 174–180. [Google Scholar] [CrossRef]
- Oliver, J.M.; Lambert, B.S.; Martin, S.E.; Green, J.S.; Crouse, S.F. Predicting football players’ dual-energy x-ray absorptiometry body composition using standard anthropometric measures. J. Athl. Train. 2012, 47, 257–263. [Google Scholar] [CrossRef]
- White, J.; Mayhew, J.L.; Piper, F.C. Prediction of body composition in college football players. Sports Med. Phys. Fit. 1980, 20, 317–324. [Google Scholar]
- de Souza Cerqueira, B.; Baú Cerqueira, M.; Costa Ferreira, W.; Mendes de Oliveira, F.; Vidal Andreato, L.; dos Santos-Junior, R.B.; Valdés-Badilla, P.; Magnani Branco, B.H. Proposal of a normative table for classification of body fat percentage in Brazilian Jiu-Jitsu athletes. Int. J. Morphol. 2022, 40, 57–61. [Google Scholar] [CrossRef]
- da Silva, B.V.C.; de Moura, S.; Mário, A.; Marocolo, M.; Franchini, E.; da Mota, G.R. Optimal load for the peak power and maximal strength of the upper body in Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2015, 29, 1616–1621. [Google Scholar] [CrossRef]
- Báez, E.; Franchini, E.; Ramírez-Campillo, R.; Cañas-Jamett, R.; Herrera, T.; Burgos-Jara, C.; Henríquez-Olguín, C. Anthropometric characteristics of top-class Brazilian Jiu Jitsu athletes: Role of fighting style. Int. J. Morphol. 2014, 32, 1043–1050. [Google Scholar] [CrossRef]
- Diaz-Lara, F.J.; García, J.M.G.; Monteiro, L.F.; Abian-Vicen, J. Body composition, isometric hand grip and explosive strength leg—Similarities and differences between novices. Arch. Budo 2014, 10, 211–217. [Google Scholar]
- Pietraszewska, J.; Burdukiewicz, A.; Stachoń, A.; Andrzejewska, J.; Stefaniak, T.W. Body build and the level of development of muscle strength among male Jiu-Jitsu competitors and strength-trained adults. Hum. Mov. 2014, 15, 134–140. [Google Scholar] [CrossRef]
- Øvretveit, K. Anthropometric and physiological characteristics of Brazilian Jiu-Jitsu athletes. J. Strength Cond. Res. 2018, 32, 997–1004. [Google Scholar] [CrossRef]
- de Faria, E.R.; de Faria, F.R.; Gonçalves, V.S.; Franceschini, S.D.C.C.; Peluzio, M.D.C.C.; Sant’Ana, L.F.; Priore, S.E. Prediction of body fat in a dolescents: Comparison of two electric bioimpedance devices with dual-energy X-ray-absorptiometry. Nutr. Hosp. 2014, 30, 1270–1278. [Google Scholar] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and agreement of various InBody body composition analyzers as compared to dual-energy X-ray absorptiometry in healthy men and women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Lemos, T.; Gallagher, D. Current body composition measurement techniques. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 310. [Google Scholar] [CrossRef]
- Houtkooper, L.B.; Mullins, V.A.; Going, S.B.; Brown, C.H.; Lohman, T.G. Body composition profiles of elite American heptathletes. Int. J. Sport Nutr. Exerc. Metab. 2001, 11, 162–173. [Google Scholar] [CrossRef]
- Turocy, P.S.; DePalma, B.F.; Horswill, C.A.; Laquale, K.M.; Martin, T.J.; Perry, A.C.; Somova, M.J.; Utter, A.C.; National Athletic Trainers’ Association. National Athletic Trainers’ Association position statement: Safe weight loss and maintenance practices in sport and exercise. J. Athl. Train. 2011, 46, 322–336. [Google Scholar]
- Bilsborough, J.C.; Greenway, K.; Opar, D.; Livingstone, S.; Cordy, J.; Coutts, A.J. The accuracy and precision of DXA for assessing body composition in team sport athletes. J. Sports Sci. 2014, 32, 1821–1828. [Google Scholar] [CrossRef] [PubMed]
- Paton, N.I.J.; Macallan, D.C.; Jebb, S.A.; Pazianas, M.; Griffin, G.E. Dual-energy X-ray absorptiometry results differ between machines. Lancet 1995, 346, 899–900. [Google Scholar] [CrossRef] [PubMed]
- Nana, A.; Slater, G.J.; Stewart, A.D.; Burke, L.M. Methodology review: Using dual-energy X-ray absorptiometry (DXA) for the assessment of body composition in athletes and active people. Int. J. Sport Nutr. Exerc. Metab. 2015, 25, 198–215. [Google Scholar] [CrossRef]
- Nana, A.; Slater, G.J.; Hopkins, W.G.; Halson, S.L.; Martin, D.T.; West, N.P.; Burke, L.M. Importance of standardized DXA protocol for assessing physique changes in athletes. Int. J. Sport Nutr. Exerc. Metab. 2016, 26, 259–267. [Google Scholar] [CrossRef]
- Deutz, R.C.; Benardot, D.; Martin, D.E.; Cody, M.M. Relationship between energy deficits and body composition in elite female gymnasts and runners. Med. Sci. Sports Exerc. 2000, 32, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bilsborough, J.C.; Kempton, T.; Greenway, K.; Cordy, J.; Coutts, A.J. Longitudinal changes and seasonal variation in body composition in professional Australian football players. Int. J. Sports Physiol. Perform. 2017, 12, 10–17. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Hatfield, M.; Parker, B.B.; Roberts, L.A.; Minahan, C.; Morton, J.P.; Thornton, H.R. DXA-derived estimates of energy balance and its relationship with changes in body composition across a season in team sport athletes. Eur. J. Sport Sci. 2020, 20, 859–867. [Google Scholar] [CrossRef]
- Milsom, J.; Naughton, R.; O’Boyle, A.; Iqbal, Z.; Morgans, R.; Drust, B.; Morton, J.P. Body composition assessment of English Premier League soccer players: A comparative DXA analysis of first Team, U21 and U18 Squads. J. Sports Sci. 2015, 33, 1799–1806. [Google Scholar] [CrossRef]
- Carrion, B.M.; Wells, A.; Mayhew, J.L.; Koch, A.J. Concordance among bioelectrical impedance analysis measures of percent body fat in athletic young adults. Int. J. Exerc. Sci. 2019, 12, 324–331. [Google Scholar] [PubMed]
- Dimitrijevic, M.; Paunovic, V.; Zivkovic, V.; Bolevich, S.; Jakovljevic, V. Body fat evaluation in male athletes from combat sports by comparing anthropometric, bioimpedance, and dual-energy X-ray absorptiometry measurements. Biomed Res. Int. 2022, 2022, 1–8. [Google Scholar] [CrossRef]
- Sullivan, K.M. Documentation for Sample Size for a Proportion. Available online: https://www.openepi.com/PDFDocs/SSProporDoc.pdf (accessed on 25 August 2023).
- Binner, A. A Breakdown: Weight Categories for Olympic Boxing Qualifiers. Available online: https://olympics.com/en/news/boxing-olympics-qualification-weight-categories (accessed on 24 September 2019).
- Binner, A. What Different Weight Classes are at Olympic Wrestling? Available online: https://olympics.com/en/news/weight-classes-olympics-wrestling-tokyo (accessed on 28 September 2019).
- Branco, B.H.M.; Andreato, L.V.; Ribeiro, E.D.; de Oliveira, H.G.; Almeida, F.N.; Junior, N.N. Development of tables for classifying judo athletes according to maximal isometric strength and muscular power, and comparisons between athletes at different competitive levels. Sport Sci. Health 2018, 14, 607–614. [Google Scholar] [CrossRef]
- Yang, S.W.; Kim, T.H.; Choi, H.M. The reproducibility and validity verification for body composition measuring devices using bioelectrical impedance analysis in Korean adults. J. Exerc. Rehabil. 2018, 14, 621–627. [Google Scholar] [CrossRef]
- Body Fat Analyzer (Professional) X-Scan II. Available online: https://www.tradekorea.com/product/detail/P434715/Body-Fat-Analyzer-(professional)-X-Scan-II-.html (accessed on 26 August 2023).
- Cole, T.J.; Green, P.J. Smoothing reference centile curves: The LMS method and penalized likelihood. Stat. Med. 1992, 11, 1305–1319. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index—BMI; World Health Organization: Geneva, Switzerland, 2018; Available online: http://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 15 June 2021).
- Zierle-Ghosh, A.; Jan, A. Physiology, Body Mass Index. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535456/ (accessed on 12 January 2023).
- Bradbury, K.E.; Guo, W.; Cairns, B.J.; Armstrong, M.E.; Key, T.J. Association between physical activity and body fat percentage, with adjustment for BMI: A large cross-sectional analysis of UK Biobank. BMJ Open 2017, 7, e011843. [Google Scholar] [CrossRef]
- Rezende, F.A.; Rosado, L.E.; Franceschinni, S.C.; Rosado, G.P.; Ribeiro, R.C. The body mass index applicability in the body fat assessment. Rev. Bras. Med. Esporte 2010, 16, 90–94. [Google Scholar] [CrossRef]
- Reale, R.; Burke, L.M.; Cox, G.R.; Slater, G. Body composition of elite Olympic combat sport athletes. Eur. J. Sport Sci. 2020, 20, 147–156. [Google Scholar] [CrossRef]
- Ratamess, N.A. Strength and conditioning for grappling sports. Strength Cond. J. 2011, 33, 18–24. [Google Scholar] [CrossRef]
- Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. The association between rapid weight loss and body composition in elite combat sports athletes. Healthcare 2022, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Andreato, L.V.; Santos, J.F.S.; Esteves, J.V.D.C.; Panissa, V.L.G.; Julio, U.F.; Franchini, E. Physiological, nutritional and performance profiles of Brazilian Jiu-Jitsu athletes. J. Hum. Kinet. 2016, 53, 261–271. [Google Scholar] [CrossRef]
- Baranauskas, M.; Tubelis, L.; Stukas, R.; Švedas, E.; Samsonienė, L.; Karanauskienė, D. The influence of short-term hypocaloric nutrition on bodyweight reduction in Lithuanian Olympic Team wrestlers. Balt. J. Sport Health Sci. 2011, 4, 5–12. [Google Scholar]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Podgórski, T.; Sokolowski, M.; Jeszka, J. Relationship between body composition indicators and physical capacity of the combat sports athletes. Arch. Budo 2016, 12, 247–256. [Google Scholar]
- Balci, A.; Tortu, E.; Kabak, B. Investigation of the body composition and maximal oxygen consumption capacity of elite boxing and wrestling athletes. Turk. J. Phys. Med. Rehabil. 2020, 22, 452–457. [Google Scholar]
- Ceylan, B.; Gurses, V.V.; Akgul, M.S.; Baydil, B.; Franchini, E. Anthropometric profile, wingate performance and special judo fitness levels of Turkish Olympic judo athletes. Ido Mov. Cult. J. Martial Arts Anthrop. 2018, 18, 15–20. [Google Scholar]
- Arazi, H.; Noori, M.; Izadi, M. Correlation of anthropometric and biomotor attributes with Special Judo Fitness Test in senior male judokas. Ido Mov. Cult. J. Martial Arts Anthrop. 2017, 17, 19–24. [Google Scholar]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex differences in human adipose tissues—The biology of pear shape. Biol. Sex. Differ. 2012, 3, 13. [Google Scholar] [CrossRef]
- Al-Khelaifi, F.; Diboun, I.; Donati, F.; Botrè, F.; Alsayrafi, M.; Georgakopoulos, C.; Suhre, K.; Yousri, N.A.; Elrayess, M.A. A pilot study comparing the metabolic profiles of elite-level athletes from different sporting disciplines. Sports Med. Open 2018, 4, 2. [Google Scholar] [CrossRef]
- Sansone, P.; Makivic, B.; Csapo, R.; Hume, P.; Martínez-Rodríguez, A.; Bauer, P. Body fat of basketball players: A systematic review and meta-analysis. Sports Med. Open 2022, 8, 26. [Google Scholar] [CrossRef] [PubMed]
- Domingos, C.; Matias, C.N.; Cyrino, E.S.; Sardinha, L.B.; Silva, A.M. The usefulness of Tanita TBF-310 for body composition assessment in Judo athletes using a four-compartment molecular model as the reference method. Rev. Assoc. Med. Bras. 2019, 65, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.-K.; Ho, C.-Y.; Lai, C.-L.; Taun, C.-Y.; Hsieh, K.-C. Assessment of standing multi-frequency bioimpedance analyzer to measure body composition of the whole body and limbs in elite male wrestlers. Int. J. Environ. Res. Public Health 2022, 19, 15807. [Google Scholar] [CrossRef]
Weight Classes (Upper Limit in kg) | Wrestlers (%) | Judokas (%) | Boxers (%) |
---|---|---|---|
60 kg 1,2; flyweight (52 kg) 3 | 17.2 | 44.4 | 14.3 |
67 kg 1; 66 kg 2; featherweight (57 kg) 3 | 17.2 | 22.2 | 50 |
77 kg 1; 73 kg 2; lightweight (63 kg) 3 | 24.1 | – | 14.3 |
87 kg 1; 81 kg 2; welterweight (69 kg) 3 | 31 | – | – |
97 kg 1; 90 kg 2; middleweight (75 kg) 3 | 3.4 | 22.2 | 7.1 |
130 kg 1; 100 kg 2; light heavyweight (81 kg) 3 | 6.9 | – | 7.1 |
>100 kg 2; heavyweight (>91 kg) 3 | – | 11.1 | – |
Super heavyweight (>91 kg) 3 | – | – | 7.1 |
Variable | Wrestlers a | Judokas | Boxers | Total |
---|---|---|---|---|
Height (m) | 1.8 ± 0.1 | 1.7 ± 0.2 | 1.7 ± 0.1 | 1.7 ± 0.1 |
Body mass (kg) | 74.9 ± 14.9 * | 65.8 ± 22.9 | 62.1 ± 14.4 | 69.9 ± 17.1 |
Fat-free mass (kg) | 62.7 ± 11.1 * | 53.7 ± 14.0 | 53.0 ± 7.9 | 58.5 ± 11.7 |
Fat-free mass (%) BIA | 84.1 ± 4.2 | 83.8 ± 7.4 | 86.6 ± 6.4 | 84.7 ± 5.5 |
Musculoskeletal mass (kg) | 58.3 ± 10.3 * | 49.9 ± 12.8 | 49.4 ± 7.1 | 54.4 ± 10.8 |
Musculoskeletal mass (%) BIA | 78.3 ± 4.1 | 78.0 ± 7.3 | 80.7 ± 6.3 | 78.9 ± 5.4 |
Body fat mass (kg) | 12.3 ± 5.0 | 12.1 ± 9.4 | 9.1 ± 6.9 | 11.4 ± 6.5 |
Body fat mass (%) BIA | 15.7 ± 4.1 | 16.1 ± 7.4 | 13.4 ± 6.4 | 15.2 ± 5.4 |
BMI (kg/m2) | 23.5 ± 3.2 | 22.5 ± 4.3 | 20.7 ± 3.2 | 22.6 ± 3.5 |
MFR | 5.4 ± 2.0 | 6.0 ± 3.1 | 7.5 ± 3.8 | 6.1 ± 2.9 |
Percentile | Body Fat Percentage (%) | Body Mass Index (kg/m2) | Classification |
---|---|---|---|
P3 | 6.6–7.8 | 17.8–18.5 | Extremely low |
P10 | 7.9–10.9 | 18.6–19.9 | Very low |
P25 | 11.0–14.7 | 20.0–21.9 | Below normal |
P50 | 14.8–18.8 | 22.0–24.9 | Normal |
P75 | 18.9–21.5 | 25.0–27.7 | Above normal |
P90 | 21.6–29.3 | 27.8–31.4 | Very excessive |
P97 | ≥29.4 | ≥31.5 | Extremely excessive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranauskas, M.; Kupčiūnaitė, I.; Stukas, R. Establishing Benchmark Percentiles for the Classification of Body Fat Percentage of Professional Male Athletes Competing in Combat Sports through Bioimpedanciometry. Appl. Sci. 2023, 13, 9885. https://doi.org/10.3390/app13179885
Baranauskas M, Kupčiūnaitė I, Stukas R. Establishing Benchmark Percentiles for the Classification of Body Fat Percentage of Professional Male Athletes Competing in Combat Sports through Bioimpedanciometry. Applied Sciences. 2023; 13(17):9885. https://doi.org/10.3390/app13179885
Chicago/Turabian StyleBaranauskas, Marius, Ingrida Kupčiūnaitė, and Rimantas Stukas. 2023. "Establishing Benchmark Percentiles for the Classification of Body Fat Percentage of Professional Male Athletes Competing in Combat Sports through Bioimpedanciometry" Applied Sciences 13, no. 17: 9885. https://doi.org/10.3390/app13179885
APA StyleBaranauskas, M., Kupčiūnaitė, I., & Stukas, R. (2023). Establishing Benchmark Percentiles for the Classification of Body Fat Percentage of Professional Male Athletes Competing in Combat Sports through Bioimpedanciometry. Applied Sciences, 13(17), 9885. https://doi.org/10.3390/app13179885