Analyzing the Alignment between AI Curriculum and AI Textbooks through Text Mining
Abstract
:1. Introduction
2. Related Research
2.1. Trends in AI Education Content
2.1.1. AI-Related Knowledge Areas in Structuring Standard Curriculum (Higher Education)
2.1.2. K-12 AI Curriculum Content
2.2. Research on Textbook Analysis Methods
2.3. Analysis of Educational Data USING Text Mining
- TF-IDF (t, d, D) = TF (t, d) × IDF (t, D).
- TF (t, d) = (number of occurrences of term t in document d)/(total number of terms in document d).
- IDF (t, D) = ln (total number of documents in the corpus)/(number of documents with term t).
3. Research Methods
3.1. Data Collection
3.2. Data Preprocessing
3.3. Analysis Method
4. Textbook Analysis Results
4.1. Evaluation of Consistency between Curriculum and Textbooks through Frequency Analysis
4.1.1. Consistency of Curriculum and Textbooks through TF Analysis
4.1.2. Evaluation of Textbook Specificity through TF-IDF Analysis
4.2. Evaluation of Textbook Knowledge Composition through LDA Topic Modeling Analysis
4.3. Tool Utilization through Content Analysis
4.4. Results of the Alignment Evaluation between Curriculum and Textbooks
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dondi, M.; Klier, J.; Panier, F.; Schubert, J. Defining the Skills Citizens Will Need in the Future World of Work; McKinsey & Company: Tokyo, Japan, 2021; p. 25. [Google Scholar]
- OECD. An OECD Learning Framework 2030; Springer International Publishing: Cham, Switzerland, 2019; pp. 23–35. [Google Scholar]
- Miao, F.; Shiohira, K. K-12 AI Curricula. A Mapping of Government-Endorsed AI Curricula; UNESCO: Paris, France, 2022. [Google Scholar]
- Clear, A.; Parrish, A.; Impagliazzo, J.; Wang, P.; Ciancarini, P.; Cuadros-Vargas, E. Computing Curricula 2020 (CC2020): Paradigms for Future Computing Curricula; ACM/IEEE Computer Society: New York, NY, USA, 2020. [Google Scholar]
- Danyluk, A.; Leidig, P.; Cassel, L.; Servin, C. Computing competencies for undergraduate data science curricula: ACM Data Science Task Force. In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education, Virtual, 13–20 March 2021. [Google Scholar]
- Draft, S. Computing Science Curricula 2013(CS2013); ACM/IEEE: New York, NY, USA, 2013. [Google Scholar]
- AI4K12. Available online: https://ai4k12.org/ (accessed on 1 May 2023).
- CBSE. Artificial Intelligence (Sub. Code 843) Class—XI&XII Cbse Department of Skill Education Curriculum for Session 2021–2022; BSE: New Delhi, India, 2021. [Google Scholar]
- Ministry of Education of the People’s Republic of China. Information Technology Curriculum Standards for Ordinary High Schools; Ministry of Education of the People’s Republic of China: Beijing, China, 2017. [Google Scholar]
- Ministry of Education. Ministry of Education Announcement No. 2015-74 [Supplementary Book 10]: Curriculum Guidelines for Practical Subjects (Technology/Home Economics) and Informatics Studies; Ministry of Education: Sejong-si, Republic of Korea, 2020. [Google Scholar]
- Astiz, M.F.; Wiseman, A.W.; Baker, D.P. Slouching towards decentralization: Consequences of globalization for curricular control in national education systems. Comp. Educ. Rev. 2002, 46, 66–88. [Google Scholar] [CrossRef]
- Mok, K.H. (Ed.) Centralization and Decentralization: Educational Reforms and Changing Governance in Chinese Societies; Springer Science & Business Media: Cham, Switzerland, 2013. [Google Scholar]
- Gumilar, S.; Hadianto, D.; Amalia, I.F.; Ismail, A. The portrayal of women in Indonesian national physics textbooks: A textual analysis. Int. J. Sci. Educ. 2022, 44, 416–433. [Google Scholar] [CrossRef]
- Aivelo, T.; Neffling, E.; Karala, M. Representation for whom? Transformation of sex/gender discussion from stereotypes to silence in Finnish biology textbooks from 20th to 21th century. J. Biol. Educ. 2022, 1–15. [Google Scholar] [CrossRef]
- Ho, Y.-R. Indigenous language curriculum revival: An emancipatory education analysis of Taiwanese Indigenous language policy and textbooks. J. Curric. Stud. 2022, 54, 501–519. [Google Scholar] [CrossRef]
- Wang, T.; Ma, Y.; Ling, Y.; Wang, J. Integrated STEM in high school science courses: An analysis of 23 science textbooks in China. Res. Sci. Technol. Educ. 2021, 41, 1197–1214. [Google Scholar] [CrossRef]
- Zhang, Q.-P.; Wong, N.-Y. The Learning Trajectories of Similarity in Mathematics Curriculum: An Epistemological Analysis of Hong Kong Secondary Mathematics Textbooks in the Past Half Century. Mathematics 2021, 9, 2310. [Google Scholar] [CrossRef]
- Pinson, H.; Agbaria, A.K. Ethno-nationalism in citizenship education in Israel: An analysis of the official civics textbook. Br. J. Sociol. Educ. 2021, 42, 733–751. [Google Scholar] [CrossRef]
- Chen, K.; Zhou, J.; Lin, J.; Yang, J.; Xiang, J.; Ling, Y. Conducting Content Analysis for Chemistry Safety Education Terms and Topics in Chinese Secondary School Curriculum Standards, Textbooks, and Lesson Plans Shows Increased Safety Awareness. J. Chem. Educ. 2020, 98, 92–104. [Google Scholar] [CrossRef]
- Heemann, T.; Hammann, M. Towards teaching for an integrated understanding of trait formation: An analysis of genetics tasks in high school biology textbooks this paper was presented at the ERIDOB conference 2020. J. Biol. Educ. 2020, 54, 191–201. [Google Scholar] [CrossRef]
- Lucy, L.; Demszky, D.; Bromley, P.; Jurafsky, D. Content Analysis of Textbooks via Natural Language Processing: Findings on Gender, Race, and Ethnicity in Texas U.S. History Textbooks. AERA Open 2020, 6, 2332858420940312. [Google Scholar] [CrossRef]
- Sakhovskiy, A.; Solovyev, V.; Solnyshkina, M. Topic Modeling for Assessment of Text Complexity in Russian Textbooks. In Proceedings of the 2020 Ivannikov Ispras Open Conference (ISPRAS), Moscow, Russia, 10–11 December 2020; IEEE: New York, NY, USA, 2020; pp. 102–108. [Google Scholar]
- BouJaoude, S.; Noureddine, R. Analysis of science textbooks as cultural supportive tools: The case of Arab countries. Int. J. Sci. Educ. 2020, 42, 1108–1123. [Google Scholar] [CrossRef]
- González-Delgado, M.; Lorenzo, M.F.; Machado-Trujillo, C. The concept of the State in textbooks: Analysis and reinterpretation during the Spanish Transition to Democracy (1976–1986). Br. J. Educ. Stud. 2020, 68, 331–347. [Google Scholar] [CrossRef]
- Hyun-joo, P.; Kwon, J. Analysis of inquiry tendencies in high-level middle school 1 chemistry textbooks during the Kim Jong-un era in North Korea. J. Korean Chem. Soc. 2019, 63, 266–279. [Google Scholar]
- Rusek, M.; Vojíř, K. Analysis of text difficulty in lower-secondary chemistry textbooks. Chem. Educ. Res. Pract. 2019, 20, 85–94. [Google Scholar] [CrossRef]
- Yun, E.; Park, Y. Extraction of scientific semantic networks from science textbooks and comparison with science teachers’ spoken language by text network analysis. Int. J. Sci. Educ. 2018, 40, 2118–2136. [Google Scholar] [CrossRef]
- Choi, G.S.; Lee, J.Y.; Yoon, H.S. Development of a quantitative analysis model of creative problem solving ability in computer textbooks. Clust. Comput. 2015, 18, 733–745. [Google Scholar] [CrossRef]
- Cohen, R.; Yarden, A. How the Curriculum Guideline “The Cell Is to Be Studied Longitudinally” Is Expressed in Six Israeli Junior-High-School Textbooks. J. Sci. Educ. Technol. 2010, 19, 276–292. [Google Scholar] [CrossRef]
- Lei, L. Text Analysis with R for Students of Literature. J. Quant. Linguist. 2016, 23, 228–233. [Google Scholar] [CrossRef]
- Dieng, A.B.; Ruiz, F.J.; Blei, D.M. The dynamic embedded topic model. arXiv 2019, arXiv:1907.05545. [Google Scholar]
- Ferreira-Mello, R.; André, M.; Pinheiro, A.; Costa, E.; Romero, C. Text mining in education. Wiley Interduce Rev. Data Min. Knowl. Discov. 2019, 9, e1332. [Google Scholar] [CrossRef]
- Rezgui, Y. Text-based domain ontology building using Tf-Idf and metric clusters techniques. Knowl. Eng. Rev. 2007, 22, 379–403. [Google Scholar] [CrossRef]
- Mcauliffe, J.; Blei, D. Supervised topic models. Adv. Neural Inf. Process. Syst. 2007, 20, 1–8. [Google Scholar]
- Hoffman, M.; Bach, F.; Blei, D. Online learning for latent dirichlet allocation. Adv. Neural Inf. Process. Syst. 2010, 23, 1–9. [Google Scholar]
- Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent dirichlet allocation. J. Mach. Learn. Res. 2003, 3, 993–1022. [Google Scholar]
- Chen, S.; Wu, L.; Zhuo, J. The Application of Unsupervised Learning TF-IDF Algorithm in Word Segmentation of Ideological and Political Education. Wirel. Commun. Mob. Comput. 2022, 2022, 5219117. [Google Scholar] [CrossRef]
- Fukushima, Y.; Shin, M.; Miyazaki, K.; Ito, T.; Yonekura, R.; Tanaka, M.S. Report Search Function Using TF-IDF for PBL Education. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16 October 2020; IEEE: New York, NY, USA, 2020; pp. 802–803. [Google Scholar]
- Lee, D.; Kwon, H. Keyword analysis of the mass media’s news articles on maker education in South Korea. Int. J. Technol. Des. Educ. 2020, 32, 333–353. [Google Scholar] [CrossRef]
- Sekiya, T.; Matsuda, Y.; Yamaguchi, K. Mapping analysis of CS2013 by supervised LDA and isomap. In Proceedings of the 2014 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), Wellington, New Zealand, 8–10 December 2014; IEEE: New York, NY, USA, 2014; pp. 33–40. [Google Scholar]
- Wen, Y.; Zhao, X.; Li, X.; Zang, Y. Explaining the Paradox of World University Rankings in China: Higher Education Sustainability Analysis with Sentiment Analysis and LDA Topic Modeling. Sustainability 2023, 15, 5003. [Google Scholar] [CrossRef]
- Cutumisu, M.; Guo, Q. Using Topic Modeling to Extract Pre-Service Teachers’ Understandings of Computational Thinking From Their Coding Reflections. IEEE Trans. Educ. 2019, 62, 325–332. [Google Scholar] [CrossRef]
- Altamirano, M.; Uribe, P.; Schlotterbeck, D.; Jiménez, A.; Araya, R.; Moris, J.v.d.M.; Caballero, D. Unsupervised characterization of lessons according to temporal patterns of teacher talk via topic modeling. Neurocomputing 2022, 484, 211–222. [Google Scholar] [CrossRef]
- Gurcan, F.; Cagiltay, N.E. Big Data Software Engineering: Analysis of Knowledge Domains and Skill Sets Using LDA-Based Topic Modeling. IEEE Access 2019, 7, 82541–82552. [Google Scholar] [CrossRef]
- Kumsung. Introduction to Artificial Intelligence; Kumsung: Seoul, Republic of Korea, 2021. [Google Scholar]
- Gilbut. Introduction to Artificial Intelligence; Gilbut: Gyeonggi, Republic of Korea, 2021. [Google Scholar]
- MiraeN. Introduction to Artificial Intelligence; MiraeN: Jeonnam, Republic of Korea, 2021. [Google Scholar]
- Visang. Introduction to Artificial Intelligence; Visang: Seoul, Republic of Korea, 2021. [Google Scholar]
- Samyang. Introduction to Artificial Intelligence; Samyang: Seoul, Republic of Korea, 2021. [Google Scholar]
- Seongandang. Introduction to Artificial Intelligence; Seongandang: Seoul, Republic of Korea, 2021. [Google Scholar]
- Cmass. Introduction to Artificial Intelligence; Cmass: Seoul, Republic of Korea, 2021. [Google Scholar]
- Chunjaetext. Introduction to Artificial Intelligence; Chunjaetext: Seoul, Republic of Korea, 2021. [Google Scholar]
- Park, E.L.; Cho, S. KoNLPy: Korean natural language processing in Python. In Proceedings of the 26th Annual Conference on Human & Cognitive Language Technology, Chuncheon, Republic of Korea, 22 April–13 May 2014; Volume 6, pp. 133–136. [Google Scholar]
- Hidayatullah, A.F.; Ma’arif, M.R. Road traffic topic modeling on Twitter using latent dirichlet allocation. In Proceedings of the 2017 International Conference on Sustainable Information Engineering and technology (SIET), Batu City, Indonesia, 24–25 November 2017; IEEE: New York, NY, USA, 2017; pp. 47–52. [Google Scholar]
- K-12 Computer Science Framework Steering Committee. K-12 Computer Science Framework; ACM: New York, NY, USA, 2016. [Google Scholar]
- College Board. College Board AP® Computer Science a Course and Exam Description; College Board: New York, NY, USA, 2020. [Google Scholar]
Field | Body of Knowledge | Remarks | ||
---|---|---|---|---|
Computer Science: CS 2013 | KA | Knowledge Units (KUs) | - | |
Intelligent Systems (ISs) | o Fundamental Issues o Basic Search Strategies o Basic Knowledge Representation and Reasoning o Basic Machine Learning o Advanced Search o Advanced Representation and Reasoning | o Reasoning Under Uncertainty o Agents o Natural Language o Advanced Machine Learning o Robotics o Perception and Computer- Vision | o Knowledge-based learning: - Knowledge area (KA), knowledge unit (KU), learning outcome (LO) o Total number of KAs: 18 o Cross-reference: - Algorithms and Complexity (AL) - Discrete Structures (DS) - Human–Computer Interaction (HCI) - Information Management (IM) o Learning outcomes: 3 levels of mastery—familiarity, usage, assessment | |
Data Science: CCDS 2021 | KA | Sub-domains | - | |
Artificial Intelligence (AI) | o General o Knowledge Representation and Reasoning (Logic-based Models) | o Planning and Search Strategies | o Competency-based learning o Competency = knowledge + skills + dispositions in context o Competency framework - Area > scope, competencies, sub-domains > Knowledge-Skills-Disposition (K-S-D) o Skills: expressed in areas of learning outcomes. o Total number of KAs: 11 o Data Privacy, Security, Integrity, and Analysis for Security (DPSIA): cross-cutting issues around privacy, security, and integrity that relate to competencies in all of the Knowledge Areas | |
Data Mining (DM) | o Proximity Measurement o Data Preparation o Information Extraction o Cluster Analysis o Classification and Regression | o Pattern Mining o Outlier Detection o Time Series Data o Mining Web Data o Information Retrieval | ||
Machine Learning (ML) | o General o Supervised Learning o Unsupervised Learning o Mixed Methods | o Deep Learning o Reinforcement Learning (Appears in AI-Knowledge Representation and Reasoning—Probability-based Models) |
Curriculum | Contents | Remarks | |
---|---|---|---|
K-12 AI Curriculum | Competency | Area: Domain | ∙Competency-based education (CBE) - knowledge: Domain > sub-domain > learning outcomes (common verbs include “know”, “understand”, “reflect”, and “compare”) - Skills: Topic area > description of skills (common verbs include “use”, “create”, “build”, “revise”, and “write”) - Values: Value/Attitude to be developed > examples of related knowledge and skills outcomes (common verbs include “explore”, “solve”, “create”, “reflect”, “design”, “use”, “explain”, “compare”) ∙Grade levels: Primary, middle, high |
Knowledge | ∙AI foundations: Algorithms, Programming, Contextual problem-solving, Data literacy ∙Understanding, using, and developing AI: AI techniques, AI technologies, AI development ∙Ethics and social impact: Applications of AI to other domains (AI Applications), AI Ethics, Social implications of AI | ||
Skills | |||
Values/ Attitudes | ∙Personal: Interest in ICT, Persistence/Resilience, Personal empowerment, Reflection, Critical thinking and reflection, Entrepreneurship ∙Social: Collaboration/Teamwork, Communication ∙Societal: Respect for others, Personal responsibility, Integrity, Tolerance ∙Human: Respect for the environment/sustainable mindset, Commitment to equity | ||
K-12 AI Guidelines | Big Idea | Concept | ∙Big idea > concept, LO, EU, Unpacked description, activity - LO (Learning Objective): what students should be able to learn - EU (Enduring Understanding): What students should know - Unpacked descriptions are included when necessary to illustrate the LO or EU - Activity: Teaching and learning materials that support practice are provided as a google link ∙The AI4K12 draft guidelines are organized in grade band progression charts that span K-2, 3–5, 6–8, and 9–12 grade bands - “Perception” is the process of extracting meaning from sensory signals - Agents maintain “representations” of the world and use them for “reasoning.” - “Machine learning” is a kind of statistical inference that finds patterns in data - Intelligent agents require many kinds of knowledge to “interact naturally” with humans - AI can “impact society” in both positive and negative ways |
Perception | ∙Sensing: [1-A-i] Living things, [1-A-ii] Computer sensors, [1-A-iii] Digital encoding ∙Processing: [1-B-i] Sensing vs perception, [1-B-ii], Feature extraction, [1-B-iii] Abstraction pipeline: language, [1-B-iv] Abstraction pipeline: vision ∙Domain knowledge: [1-C-i] Types of domain knowledge, [1-C-ii] Inclusivity | ||
Representation and Reasoning | ∙Representation: [2-A-i] Abstraction, [2-A-ii] Symbolic representations, [2-A-iii] Data structures, [2-A-iv] Feature vectors ∙Search: [2-B-i] State spaces and operators, [2-B-ii] Combinatorial search ∙Reasoning: [2-C-i] Types of reasoning problems, [2-C-ii] Reasoning algorithms | ||
Learning | ∙Nature of Learning: [3-A-i] Humans vs. machines, [3-A-ii] Finding patterns in data, [3-A-iii] Training a model, [3-A-iv] Constructing vs. using a reasoner, [3-A-v] Adjusting internal representations, [3-A-vi] Learning from experience ∙Neural Networks: [3-B-i] Structure of a neural network, [3-B-ii] Weight adjustment ∙Datasets: [3-C-i] Feature sets, [3-C-ii] Large datasets, Bias | ||
Natural Interaction | ∙Natural Language: [4-A-i] Structure of language, [4-A-ii] Ambiguity of language, [4-A-iii] Reasoning about text, [4-A-iv] Applications ∙Common-sense Reasoning [4-B-i] ∙Understanding Emotion [4-C-i] ∙Philosophy of Mind [4-D-i] | ||
Societal Impact | - |
Nation | Title of Document | Contents | Remarks | |
Level | Unit | ∙Level > units > topics, Learning outcomes (knowledge, comprehensions, evaluation) ∙*: Should be assessed in practical examination only ∙Unit: knowledge, skills, values, critical and creative thinking skills indicated. ∙Recommended duration for each unit: - Total marks: 100 (Theory 50 + Practical 50), hours per unit (Theory + Practice) | ||
India CBSE (2023–2024) | Artificial Intelligence (senior secondary level CLASS—XI & XII) | AI Informed (AI Foundations) | ∙Introduction to AI (Knowledge) ∙AI Applications & Methodologies * (Knowledge) ∙Math for AI (Knowledge) ∙AI Values—Ethical Decision Making (Values) ∙Introduction to Storytelling * (Skills) | |
AI Inquired (AI Apply) | ∙Critical & Creative Thinking * (Skills) ∙Data Analysis—Computational Thinking * (Skills) ∙Regression (Knowledge) ∙Classification & Clustering(Knowledge) ∙AI Values—Bias Awareness * (Values) | |||
AI Innovate | ∙Capstone Project ∙Model lifecycle (Knowledge) ∙Storytelling Through Data (Critical and Creative thinking Skills) | |||
China (2017) | Preliminary AI (High school) | Area | Content demand | ∙1 course out of 6 ∙Required elective modules ∙Area > content demand |
Introduction to AI | ∙The concept and basic features of AI are explained. The development process of AI and typical applications and trends are taught. ∙Core AI algorithms (heuristic search, decision-making tree) are understood through specific case analysis. The basic process and implementation principle of smart technology application are described. | |||
Development of simple AI application module | ∙Development tools and platforms for AI application of specific area (machine learning) are described, and their features, application models, and limitations are understood through specific cases. ∙A Simple AI application module is built using open source AI application tools; appropriate environment, parameters, and natural interaction technology are acquired depending on actual needs. | |||
Development and application of AI technology | ∙Ethical and security issues faced by intelligent society are explored through experiences related to the application of intelligent systems. Security awareness and responsibilities are strengthened by learning basic methods and measures of information system security. ∙The fact that AI can bring both massive value and potential threat to the future development of human societies is dialectically recognized. Compliance with norms and laws concerning socialization and application of AI is realized. | |||
Republic of Korea (2020) | Introduction to AI (High school) | Area | Key concept | ∙1 of 2 elective subjects ∙Content system: area > key concept > content elements ∙Learning elements, achievement standards |
Understanding AI | ∙AI and society ∙AI and agent | |||
Principles and application of AI | ∙Recognition ∙Search and inference ∙Learning | |||
Data and ML | ∙Data ∙ML models | |||
Social impact of AI | ∙Impact of AI ∙Ethics of AI |
Year | 2022 [13] | 2022 [14] | 2022 [15] | 2021 [16] | 2021 [17] | 2021 [18] | 2020 [19] | 2020 [20] | 2020 [21] | 2020 [22] | 2020 [23] | 2020 [24] | 2019 [25] | 2018 [26] | 2018 [27] | 2015 [28] | 2010 [29] | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nation | Indonesia | Finland | Taiwan | China | Hong Kong | Israel | China | Germany | USA | Russia | Arab | Spain | North Korea | Czech Republic | Korea | Korea | Israel | |
Subject | Physics | Biology | Language | Science | Math | Civic (political, civic) | Chemistry | Biology | American history | Social science | Science | Social science | Chemistry | Chemistry | Science | Computer | Science | |
Analytical perspective | Knowledge or society | Female | Liberation of the natives | Similarity | Safety education | Genetic section—transgenic work | Underprivileged groups (gender, race, ethnicity) | Science, religion | Concept of state democracy | Cells should be studied longitudinally | ||||||||
Etc. (stem, competency) | Stem in physics, chemistry, and biology | Problem solving ability | ||||||||||||||||
Consistency of analysis data | Comparison to policy documents | Department of Education policy documents | Curriculum | Curriculum, lesson plans, textbooks | Curriculum guidelines | |||||||||||||
Comparison over time | Previous-current | Different period (historical context, learning trajectory) | Previous-current | Previous-current | Changes compared to the 21st century | During the democratic transition | North Korea’s Kim Jong-un era | |||||||||||
Compare multiple documents | 3 | 48 | 23 | 6 | √ | 3 | 15 | 7 + 7 | 8 | √ | √ | 6 | ||||||
Type of data | Text, visual image | Text, illustration | Text | Text | Text | Text | Text (term/topic) | Text | Text | Text | Text | Text | Text | Text | Text | Text | Visual expression, text | |
Content analysis | Frame composition based on prior research | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
Cohen’s kappa reliability test | √ | √ | √ | |||||||||||||||
Gather expert opinions | √ | √ | √ | √ | √ | |||||||||||||
Etc. | Analysis of discourse | Analysis of discourse | Horizontal and vertical analysis | Change in discourse | Subsequent evolution of descriptions, expressions | Compared to the spoken language of teachers | ||||||||||||
Text mining | NLPIR (Chinese text mining tool), frequency analysis, word cloud | Topic modeling (LDA), Wordnet, word embedding, cross reference | LDA, ARTM Word2vec—correlation of cosine distances | Text network analysis | ||||||||||||||
Statistical analysis or Romey method | Romey method | Using SPSS 18.0 and Amos 20.0 SW tools + confirmatory factor analysis quantitative analysis coefficient | ||||||||||||||||
Etc. | Text complexity | Inclination to seek | Difficulty |
Area | Key Concept | Content Elements | Learning Elements | |
---|---|---|---|---|
1. Understanding of AI | AI and society | ∙Concept and characteristics of AI ∙Advances in AI technology and social changes | · Concept of AI · Characteristics of AI · Role of AI | · AI and social changes · AI and occupational changes |
AI and agent | ∙Concept and role of intelligent agent | · Concept of intelligent agent · Relationship between AI and intelligent agent | · Role of intelligent agent | |
2. Principles and application of AI | Recognition | ∙Sensor and recognition ∙Computer vision ∙Voice recognition and language comprehension | · Sensor · Voice recognition · AI speaker · Chatbot | · Image recognition · Computer vision · Robot vision |
Search and inference | ∙Problem solving and search ∙Representation and inference | · Search tree · Best-first search | · Knowledge representation · Inference | |
Learning | ∙Concept and application of machine learning ∙Concept and application of deep learning | · Machine learning · Classification · Clustering | · Forecasting · Deep learning | |
3. Data and machine learning | Data | ∙Data attributes ∙Structured data ∙Unstructured data | · Data attributes · Structured data · Unstructured data | |
Machine learning models | ∙Classification model ∙Machine learning model implementation | · Machine learning · Classification model · Machine learning model implementation · Key property extraction | · Training data · Test data · Model training · Performance evaluation | |
4. Social impact of AI | Impact of AI | ∙Solving social problems ∙Data bias | · Values of AI · Impact of AI | · Data bias |
Ethics of AI | ∙Ethical dilemma ∙Social responsibilities and fairness | · Ethics of AI · Ethical dilemma | · Social responsibilities · Fairness of AI |
Textbooks | 1. Understanding of AI | 2. Principles and Application of AI | 3. Data and Machine Learning | 4. Social Impact of AI | Total |
---|---|---|---|---|---|
A [45] | 32 (17.5) | 66 (36.1) | 46 (25.1) | 39 (21.3) | 183 |
B [46] | 32 (14.4) | 80 (36.0) | 72 (32.4) | 38 (17.1) | 222 |
C [47] | 32 (16.2) | 70 (35.4) | 64 (32.3) | 32 (16.2) | 198 |
D [48] | 30 (15.0) | 74 (37.0) | 70 (35.0) | 26 (13.0) | 200 |
E [49] | 28 (13.5) | 74 (35.6) | 70 (33.7) | 36 (17.3) | 208 |
F [50] | 34 (15.7) | 80 (37.0) | 62 (28.7) | 40 (18.5) | 216 |
G [51] | 36 (16.2) | 90 (40.5) | 60 (27.0) | 36 (16.2) | 222 |
H [52] | 34 (16.5) | 78 (37.9) | 64 (31.1) | 30 (14.6) | 206 |
Tag | NNP | NNG | VCN | VA | VV | NP | NNB | NR | VX | Sum | |
---|---|---|---|---|---|---|---|---|---|---|---|
Textbook | Proper Noun | Common Noun | Negative Determiner | Adjective | Verb | Pronoun | General Dependent Noun | Numeral | Auxiliary Verb | ||
A [45] | 1761 | 4945 | 17 | 73 | 504 | 22 | 34 | 14 | 4 | 7374 | |
B [46] | 1813 | 4876 | 22 | 114 | 505 | 50 | 41 | 6 | 17 | 7444 | |
C [47] | 1351 | 3947 | 10 | 108 | 420 | 50 | 21 | 7 | 14 | 5928 | |
D [48] | 1790 | 4797 | 26 | 116 | 457 | 65 | 26 | 13 | 5 | 7295 | |
E [49] | 1642 | 4856 | 27 | 86 | 530 | 44 | 33 | 12 | 6 | 7236 | |
F [50] | 2535 | 6866 | 25 | 173 | 761 | 57 | 40 | 19 | 11 | 10,487 | |
G [51] | 3444 | 8956 | 64 | 254 | 1058 | 105 | 112 | 24 | 25 | 14,042 | |
H [52] | 1268 | 3912 | 20 | 148 | 449 | 87 | 47 | 12 | 3 | 5946 |
Cur. | Textbook: Corpus (Frequency) √: Keywords Included in Learning Elements *: Other Areas | |||||||
---|---|---|---|---|---|---|---|---|
Area | A [45] | B [46] | C [47] | D [48] | E [49] | F [50] | G [51] | H [52] |
1. Understanding of AI | √ AI (66) | √ AI (98) | √ AI (76) | √ AI (70) | √ AI (95) | √ AI (81) | √ AI (137) | √ Intelligence (45) |
√ Agent (42) | Technology (31) | √ Intelligence (31) | √ Intelligence (51) | √ Agent (34) | √ Agent (45) | √ Intelligence (97) | √ AI (43) | |
Technology (28) | Learning (29) | √ Agent (28) | √ Agent (46) | √ Intelligence (30) | √ Intelligence (44) | √ Agent (78) | √ Agent (32) | |
√ Intelligence (25) | √ Agent (28) | * Learning (20) | Human (23) | Human (27) | Human (30) | Human (44) | Human (17) | |
Human (19) | Human (28) | Technology (17) | Field (21) | * Data (24) | * Learning (18) | Behavior (41) | √ Role (13) | |
* Learning (17) | √ Intelligence (26) | √ Occupation (17) | * Learning (15) | Learning (20) | System (18) | Environment (31) | Computer (12) | |
Information (17) | √ Occupation (16) | √ Change (17) | √ Role (14) | Technology (13) | √ Change (17) | Information (30) | √ Occupation (9) | |
Field (16) | * Data (15) | √ Society (17) | Execute (12) | * Inference (13) | Technology (16) | Software (30) | √ Society (9) | |
Goal (15) | √ Change (14) | Mail (15) | Situation (12) | Field (12) | Through (16) | Person (27) | Use (9) | |
Environment (13) | Development (13) | Ability (12) | √ Occupation (11) | √ Change (11) | Execute (14) | Field (26) | Behavior (8) | |
Through (13) | √ Society (12) | Application (12) | √ Society (11) | Role (10) | User (14) | √ Change (25) | √ Change (8) | |
Problem (13) | Software (11) | Inference (11) | Individual (11) | √ Society (10) | Nature (14) | Occupation (23) | Judgment (8) | |
√ Society (12) | Machine (10) | Field (11) | Application (10) | Software (10) | √ Field (13) | Learning (22) | New (8) | |
Behavior (12) | Use (10) | Task (11) | Task (10) | Apply (10) | √ Society (13) | Product (21) | We (8) | |
* Robot (12) | Ability (10) | Spam (11) | Recognition (10) | Problem (10) | Apply (13) | Necessity (19) | Software (7) | |
Characteristics (11) | Environment (9) | Apply (9) | Technology (9) | Not (9) | Recognition (13) | Fast (19) | Application (7) | |
Kinds (11) | Through (9) | Judgment (9) | Process (9) | Behavior (9) | * Inference (12) | User (18) | Create (7) | |
Knowledge (11) | * Robot (9) | Execute (9) | Not (9) | Application (8) | Behavior (12) | According (18) | Through (7) | |
Based (11) | Characteristics (9) | System (9) | √ Change (8) | * Recognition (8) | Understand (12) | Execute (17) | Instead (7) | |
Rule (11) | Understand (9) | Development (8) | Characteristics (8) | Concept (8) | Process (11) | Role (17) | Autonomous (6) | |
2. Principles and application of AI | * Data (63) | √ AI (68) | √ Search (60) | State (74) | √ Learning (88) | State (110) | √ Search (99) | √ Learning (86) |
√ Learning (47) | √ Recognition (59) | √ Recognition (50) | √ Search (65) | * Data (84) | √ Learning (99) | √ Learning (91) | * Data (44) | |
Node (38) | Information (59) | * Data (37) | √ Recognition (35) | State (71) | * Data (85) | * Data (88) | Method (40) | |
State (36) | * Learning (58) | Information (36) | √ AI (29) | √ Search (50) | √ AI (72) | Method (63) | √ Search (36) | |
√ Search (36) | * Data (53) | √ Knowledge (32) | Goal (28) | √ Recognition (46) | Application (62) | √ Recognition (59) | Application (34) | |
√ Sensor (36) | Technology (52) | √ Sensor (31) | √ Knowledge (26) | Through (41) | √ Recognition (58) | √ Representation (56) | We (34) | |
√ Recognition (33) | √ Search (45) | Application (29) | Understand (26) | Application (39) | Field (55) | Human (55) | √ AI (33) | |
Rule (33) | √ Sensor (39) | Method (27) | √ Sensor (24) | Neural network (36) | Information (50) | Word (54) | √ Machine (33) | |
Application (32) | Application (38) | √ AI (26) | √ Image (24) | √ AI (34) | √ Classification (50) | Knowledge (53) | √ Recognition (29) | |
Problem (31) | √Voice recognition (34) | √ Image (26) | Technology (24) | Problem (34) | √Search (47) | √ AI (52) | Knowledge (29) | |
√ Machine (31) | State (32) | Learning (24) | Information (20) | For (30) | √ Forecasting (44) | Classification (52) | Person (28) | |
√ Knowledge (26) | Use (32) | √ Representation (24) | √ Representation (17) | √ Image (29) | Create (7) | State (49) | State (24) | |
Technology (26) | √ Computer vision (32) | Rule (22) | Method (16) | √Sensor (25) | √ Clustering (40) | Information (49) | Utilize (24) | |
Analysis (25) | Person (31) | Human (22) | Person (16) | Technology (25) | √ Image (39) | √ Image (48) | Computer (24) | |
System (25) | √ Image (30) | Use (21) | Intelligence (15) | √ Inference (25) | Rule (39) | √ Machine (48) | √ Representation (22) | |
Through (24) | Field (27) | Judgment (21) | Utilize (14) | Process (25) | For (38) | √ Sensor (45) | Problem (22) | |
Process (24) | Problem (26) | Through (20) | For (14) | Person (23) | √ Machine (37) | Use (43) | Create (21) | |
Supervised learning (22) | Through (26) | Technology (19) | Object (14) | Utilize (23) | Use (36) | Problem (41) | How (21) | |
Information (21) | Rule (23) | Person (19) | Language (14) | Field (23) | Case (34) | Process (39) | Field (20) | |
Human (21) | √ Representation (23) | Utilize (19) | Experience (13) | Next (23) | Method (31) | Utilize (37) | Technology (20) | |
3. Data and machine learning | √ Data (170) | √ Data (151) | √ Data (151) | √ Data (337) | √ Data (204) | √ Data (245) | √ Data (313) | √ Data (160) |
√ Model (57) | √ Attribute (80) | √ Classification (37) | √ Learning (192) | √ Model (94) | √Classification (109) | √Classification (126) | √ Model (72) | |
√ Classification (55) | √ Learning (64) | √ AI (33) | √ Attribute (176) | √ Classification (80) | √ Learning (105) | √ Model (111) | √ Learning (66) | |
√ Learning (53) | √ Classification (56) | √ Learning (27) | √ Model (96) | √ Attribute (51) | √ Machine (82) | √ Learning (103) | √ Attribute (65) | |
Iris (35) | √ Model (53) | √ Structured (27) | √ Machine (78) | √ Learning (45) | √ Attribute (68) | Machine (71) | √ Classification (58) | |
√ Attribute (34) | √ Structured (41) | √ Attribute (24) | Utilize (61) | * AI (45) | √ Model (54) | √ Attribute (64) | Problem (49) | |
√ Machine (28) | Meal (34) | Application (24) | Classification (53) | Generate (35) | Iris (45) | Problem (54) | √ Machine (30) | |
√ Structured (24) | √ Core (28) | √ Model (23) | Viewpoint (48) | Problem (29) | Problem (35) | √ Structured (54) | Solving (30) | |
Problem (19) | * AI (26) | Viewpoint (21) | Use (48) | Use (27) | Set (32) | Widget (49) | √ Structured (28) | |
Kinds (17) | Use (24) | Necessity (18) | Relation (43) | Solving (25) | Label (28) | Iris (45) | Use (26) | |
Kind (17) | √ Machine (23) | Use (15) | Analysis (40) | Collection (25) | Through (27) | * Image (44) | Class (26) | |
Application (16) | Problem (20) | Problem (15) | Input (37) | Necessity (24) | √ Performance (26) | Use (38) | * Image (23) | |
Characteristics (16) | √ Test (19) | Method (14) | Function (37) | Information (24) | Structured (26) | Message (38) | * Forecasting (21) | |
For (15) | √ Performance (19) | Solving (13) | * Forecasting (33) | √ Performance (23) | Next (26) | √ Test (36) | Input (20) | |
Information (15) | * Forecasting (15) | Representation (12) | Ratings (33) | √ Structured (21) | Feature (26) | Confirmation (36) | Case (20) | |
Necessity (14) | Extract (15) | Rule (12) | Necessity (28) | √ Training (21) | Banana (26) | √ Performance (35) | Movie (20) | |
Analysis (14) | Analysis (14) | √ Machine (11) | Result (28) | For (20) | Kinds (25) | For (32) | Kinds (16) | |
√ Assessment (14) | Necessity (13) | Analysis (11) | Examine (28) | Input (19) | Solving (22) | Kinds (31) | Method (15) | |
Use (13) | √ Training (13) | Exist (11) | √ Structured (27) | According (19) | Case (22) | Solving (30) | Relevant (15) | |
Utilize (13) | Label (13) | For (10) | For (27) | Form (18) | Necessity (21) | Kind (30) | Set (14) | |
4. Social impact of AI | √ AI (145) | √ AI (99) | √ AI (103) | √ AI (105) | √ AI (109) | √ AI (181) | √ AI (218) | √ AI (59) |
√ Data (65) | √ Data (43) | √ Society (51) | √ Ethics (28) | √ Data (56) | √ Ethics (49) | √ Data (72) | √ Data (35) | |
√ Bias (48) | √ Society (32) | √ Ethics (41) | √ Data (28) | √ Bias (28) | √ Society (46) | * Learning (57) | √ Society (29) | |
√ Ethics (39) | √ Bias (29) | √ Data (31) | Human (23) | √ Society (27) | Problem (46) | √ Society (53) | √ Ethics (28) | |
Human (36) | √ Ethics (22) | √ Bias (22) | Technology (18) | √ Ethics (26) | Technology (43) | √ Ethics (50) | Problem (26) | |
√ Society (35) | Human (22) | Learning (21) | √ Bias (17) | Application (22) | Learning (42) | Application (47) | √ Bias (20) | |
Learning (30) | Person (20) | * Problem (20) | For (17) | * Learning (19) | √ Data (41) | Human (44) | For (17) | |
√ Dilemma (23) | Occur (18) | Human (19) | Use (16) | Person (17) | Human (38) | Result (43) | Use (13) | |
Judgment (23) | Judgment (17) | Application (19) | √ Fair (15) | Kinds (14) | Application (34) | √ Bias (38) | √ Fair (13) | |
Situation (22) | Select (16) | Judgment (16) | Develop (14) | Problem (13) | Solving (28) | Occurrence (37) | √ Dilemma (12) | |
Problem (21) | Situation (15) | Occurrence (15) | Consideration (13) | Image (13) | Occurrence (23) | Technology (26) | Learning (11) | |
For (21) | Problem (15) | √ Impact (15) | √ Impact (11) | Human (12) | Develop (21) | Person (24) | Technology (11) | |
Application (20) | Drive (15) | Situation (14) | For (11) | Result (12) | √ Dilemma (19) | Problem (23) | √ Responsibility (11) | |
Technology (20) | √ Fair (14) | √ Dilemma (13) | Occurrence (10) | Use (11) | For (19) | √Responsibility (23) | Solving (10) | |
Person (17) | Autonomous (14) | Develop (13) | Necessity (10) | Situation (11) | For (18) | Use (23) | Member (10) | |
Result (16) | Automobile (14) | Technology (13) | Secure (10) | Development (10) | √ Bias (17) | For (21) | Person (9) | |
For (14) | Application (13) | For (12) | Case (10) | Developer (10) | Situation (17) | Necessity (21) | For (9) | |
Kinds (13) | Use (13) | Result (12) | Perspective (9) | Shown (10) | Future (17) | Not (21) | Because (9) | |
√ Fair (12) | √ Impact (13) | Solving (10) | Proper (9) | Case (9) | User (16) | Automobile (20) | √ Impact (8) | |
Recognition (11) | Dilemma (12) | √ Fair (9) | Individual (9) | √ Dilemma (8) | System (16) | Machine (20) | Prejudice (8) |
Curr. | Textbook TF-IDF: Corpus(TF-IDF) *: Computing Field-Related Keywords | |||||||
---|---|---|---|---|---|---|---|---|
Area | A [45] | B [46] | C [47] | D [48] | E [49] | F [50] | G [51] | H [52] |
1. Understanding of AI | * Computing (4.16) | Dust (6.93) | Mail (14.71) | Book (6.93) | Law (3.92) | Nature (6.58) | Excellent (9.81) | Individual (4.16) |
Intensity (4.16) | * Neural network (5.55) | Spam (10.79) | Center (4.16) | Intuition (2.94) | Protagonist (4.16) | Logistics (8.32) | Multitude (3.92) | |
Perception (3.76) | * Clustering (4.16) | Airline ticket (8.32) | Counseling (3.47) | Supplement (2.94) | Coffee (4.16) | Surgery (6.93) | Action (2.94) | |
Manufacture (2.94) | Material (4.16) | Revolution (4.16) | Customer (3.29) | Memory (2.94) | Mail (3.92) | Construction (6.93) | Vitality (2.94) | |
Save (2.94) | Cleaning (3.29) | Fourth industrial (4.16) | Prescription (2.94) | * Computing (2.77) | Command (3.16) | Camera (5.55) | Here (2.77) | |
* Knowledge base (2.94) | So (2.94) | Reservation (3.47) | Confirmation (2.94) | English (2.77) | Raise (2.94) | Shooting (5.55) | Collide (2.77) | |
Engineering (2.94) | Advantage (2.94) | Prospect (3.47) | Material (2.94) | Voice (2.77) | Active (2.94) | With machine (5.55) | Economy (2.08) | |
* Computer vision (2.94) | Current (2.94) | Properly (2.94) | File (2.94) | Judge (2.77) | Daily life (2.77) | Premise (5.55) | Value (2.08) | |
Portability (2.77) | Chess (2.94) | Happen (2.94) | Surroundings (2.94) | Clinical (2.77) | Lend (2.77) | Forest fire (5.55) | Stay (1.96) | |
Preference (2.77) | Obstacle (2.77) | Influence (2.77) | Communication (2.94) | Cleaning (2.77) | Handle (2.77) | Be (5.55) | Imitate (1.88) | |
2. Principles and application of AI | * Node (17.86) | Assist (11.09) | Withdraw (6.93) | One side (4.16) | Production (6.93) | Blog (16.64) | * Propositional logic (17.65) | Sugar level (8.32) |
* Computing (7.05) | Creation (11.09) | Fault (6.93) | Cold (4.16) | * Supervised (5.75) | Detection (12.48) | Attack (15.25) | Conjecture (8.32) | |
Turn (6.93) | Group (9.7) | * Node (6.58) | * Entry (4.16) | Apple (5.55) | Attach (8.32) | Giraffe (13.86) | Achievement (5.55) | |
Piece (6.87) | Hotdog (8.83) | * Propositional logic (5.88) | Deform (4.16) | Farmer (5.55) | Carrot (6.93) | * Node (12.69) | Sunshine (5.55) | |
* Supervised learning (6.33) | Substitute (6.87) | Lie (5.88) | Guess (3.29) | * Identifier (5.55) | Future (6.93) | Frequency (11.09) | Supervised (5.47) | |
Books (5.55) | Piece (5.88) | Affect (5.55) | * Software (2.94) | Prerequisite (5.55) | Exercise (6.93) | * Proposition (10.34) | Attribute (5.18) | |
Graft (4.16) | Voice (4.85) | Point (4.89) | * Operator (2.77) | * Generator (5.55) | Current (5.88) | Hill (9.81) | Entity (4.16) | |
Reflect (4.16) | * Supervised (4.32) | * Proposition (4.7) | Return (2.77) | Cross (4.85) | * Regression (5.88) | Officer (9.7) | Apple (4.16) | |
Launch (4.16) | Remind (4.16) | Junction (4.16) | Descend (2.77) | Concentration (4.16) | Number of cases (5.88) | * Supervised learning (8.63) | Knowledge base (4.16) | |
* Pattern recognition (3.92) | Expenditure (4.16) | Volume (4.16) | Edge (2.77) | Verify (4.16) | Bicycle (5.88) | * Linear regression (8.32) | Class (4.16) | |
3. Data and machine learning | Iris (10.07) | Meal (47.13) | Customer (5.88) | Ratings (45.75) | Discover (8.32) | Banana (18.02) | Widget (67.93) | Class (18.02) |
Salmon (9.7) | Clothes (11.09) | Chart (5.88) | Function (25.65) | Period (6.93) | Body type (16.64) | Message (52.68) | Audience (18.02) | |
Sea bass (9.7) | Number of people (9.7) | Hateful comments (4.16) | Library (23.57) | Transaction (6.93) | Iris (12.95) | Folder (22.18) | Movie (13.86) | |
Fish (5.55) | Morning (8.83) | Deficiency (4.16) | Survival (23.57) | Price (6.87) | Correlation (11.09) | Connection (13.17) | Question (9.01) | |
* Data type (5.55) | Peak (8.32) | Hashtag (4.16) | Das (13.86) | Score (6.24) | Surface (11.09) | Iris (12.95) | Answer (8.32) | |
Zebra (5.55) | Protein (6.93) | Late night (4.16) | Grape (13.86) | Wear (5.88) | Hit (9.81) | List (11.77) | Review (6.87) | |
Okapi (5.55) | Alight (5.55) | Temperature (4.16) | Furniture (13.86) | Mask (5.88) | Code (7.85) | Confusion (11.09) | Box (5.55) | |
Giraffe (5.55) | Snack bar (5.55) | Agent (4.16) | Dependence (13.86) | * Class (5.55) | Song (6.93) | * Logistic regression (10.4) | Wear (4.9) | |
Kind (4.89) | Crunch (5.55) | Chicken (4.16) | Kyoho grape (13.86) | Generate (4.67) | Width (6.04) | Orange (9.7) | Actor (4.9) | |
Table (4.23) | Go to school (5.55) | Block (4.16) | 3B (12.48) | Used (4.16) | License plate (5.88) | Kind (8.63) | Uplift (4.16) | |
4. Social impact of AI | Weapon (7.85) | Reality (4.85) | Properly (4.9) | Accept (4.9) | Track (9.7) | Prepare (5.55) | * Security (8.32) | Committee (4.16) |
Intentional (6.93) | Disease (4.85) | Red (4.16) | Permission (4.16) | Image (9.01) | Picture (4.9) | Crime (7.52) | Beneficial (2.77) | |
Translation (6.87) | Disability (4.16) | Contribute (2.94) | Subject (3.47) | Cat (8.32) | Weapon (4.9) | Algal bloom (6.93) | Reward (2.77) | |
Duty (5.88) | Amazon (4.16) | Logic (2.94) | Item (2.94) | Hair (8.32) | System (4.6) | Stock (6.93) | Principles of (2.77) | |
Omission (5.55) | Truck (4.16) | Solution (2.94) | Gap (2.94) | Appearance (5.88) | Life (4.16) | Incident (6.87) | Unnecessity (2.77) | |
Competence (5.55) | Pollution (4.16) | Contradiction (2.77) | Decline (2.77) | You (5.55) | Elephant (4.16) | Foreign language (5.55) | Advantage (2.77) | |
Reduction (5.55) | Efficiency (3.92) | Display (2.77) | Instruction (2.77) | Structured (5.55) | Grant (4.16) | Old (5.55) | Rail (2.77) | |
Expense (4.9) | Hurt (3.92) | Barista (2.77) | Emerge (2.77) | Background (4.9) | Interests (4.16) | Disappear (5.55) | Provider (2.77) | |
Example (4.16) | Driver (3.76) | Coffee (2.77) | Aim (2.77) | Quality (4.16) | Prejudice (3.92) | Transaction (5.55) | Induce (2.77) | |
Experimenter (4.16) | Diagnosis (3.47) | Deficiency (2.08) | Lose (2.77) | Discover (4.16) | Daily life (3.92) | Damage (5.55) | All (2.35) |
Text Book | Topic Composition | Total | Area of Curr. | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||||||||||||||||||||
A [45] | 0.093*”data” | + | 0.031*”model” | + | 0.030*”classification” | + | 0.029*”learning” | + | 0.019*”iris” | + | 0.019*”attribute” | + | 0.015*”machine” | + | 0.013*”structured” | + | 0.011*”problem” | + | 0.009*”kinds” | + | 0.415 | √ | √ | ||
0.009*”kind” | + | 0.009*”application” | + | 0.009*”characteristics” | + | 0.008*”information” | + | 0.008*”regarding” | + | 0.008*”analysis” | + | 0.008*”necessity” | + | 0.008*”assessment” | + | 0.007*”use” | + | 0.007*”utilize” | + | ||||||
0.007*”length” | + | 0.007*”AI” | + | 0.007*”for” | + | 0.007*”form” | + | 0.007*”save” | + | 0.006*”image” | + | 0.006*”discern” | + | 0.006*”understand” | + | 0.006*”collection” | + | 0.006*”training” | |||||||
0.066*”AI” | + | 0.023*”data” | + | 0.017*”human” | + | 0.015*”bias” | + | 0.015*”society” | + | 0.015*”technology” | + | 0.014*”learning” | + | 0.013*”agent” | + | 0.012*”ethics” | + | 0.010*”problem” | + | 0.330 | √ | √ | |||
0.010*”Judgment” | + | 0.009*”regarding” | + | 0.009*”intelligence” | + | 0.008*”application” | + | 0.007*”kinds” | + | 0.007*”dilemma” | + | 0.007*”situation” | + | 0.007*”information” | + | 0.007*”person” | + | 0.006*”through” | + | ||||||
0.006*”robot” | + | 0.006*”for” | + | 0.006*”field” | + | 0.006*”result” | + | 0.005*”behavior” | + | 0.005*”according” | + | 0.005*”explain” | + | 0.005*”necessity” | + | 0.005*”recognition” | + | 0.004*”develop” | |||||||
0.021*”data” | + | 0.016*”learning” | + | 0.013*”state” | + | 0.013*”sensor” | + | 0.012*”node” | + | 0.012*”search” | + | 0.012*”rule” | + | 0.011*”recognition” | + | 0.011*”machine” | + | 0.011*”application” | + | 0.281 | √ | ||||
0.011*”problem” | + | 0.009*”knowledge” | + | 0.009*”technology” | + | 0.009*”analysis” | + | 0.009*”system” | + | 0.009*”process” | + | 0.008*”through” | + | 0.008*”information” | + | 0.007*”supervised learning” | + | 0.007*”human” | + | ||||||
0.007*”field” | + | 0.007*”use” | + | 0.007*”process” | + | 0.006*”for” | + | 0.006*”method” | + | 0.006*”computer vision” | + | 0.006*”understand” | + | 0.006*”goal” | + | 0.006*”input” | + | 0.006*”case” | |||||||
B [46] | 0.076*”data” | + | 0.040*”attribute” | + | 0.032*”learning” | + | 0.028*”classification” | + | 0.027*”model” | + | 0.021*”structured” | + | 0.017*”meal” | + | 0.014*”core” | + | 0.013*”AI” | + | 0.012*”use” | + | 0.425 | √ | √ | ||
0.012*”machine” | + | 0.010*”problem” | + | 0.010*”performance” | + | 0.010*”test” | + | 0.008*”forecast” | + | 0.008*”extract” | + | 0.007*”analysis” | + | 0.007*”according” | + | 0.007*”necessity” | + | 0.007*”label” | + | ||||||
0.007*”implement” | + | 0.007*”training” | + | 0.006*viewpoint” | + | 0.006*”application” | + | 0.006*”image” | + | 0.006*”select” | + | 0.006*”result” | + | 0.005*”for” | + | 0.005*”solving” | + | 0.005*”neighbor” | |||||||
0.045*”AI” | + | 0.019*”data” | + | 0.016*”learning” | + | 0.015*”technology” | + | 0.012*”information” | + | 0.012*”recognition” | + | 0.012*”human” | + | 0.009*”application” | + | 0.009*”person” | + | 0.009*”use” | + | 0.279 | √ | √ | √ | ||
0.008*”sensor” | + | 0.008*”search” | + | 0.008*”problem” | + | 0.007*”society” | + | 0.007*”agent” | + | 0.007*”through” | + | 0.006*”intelligence” | + | 0.006*”field” | + | 0.006*”voice recognition” | + | 0.006*”state” | + | ||||||
0.006*”machine” | + | 0.006*”computer vision” | + | 0.005*”image” | + | 0.005*”understand” | + | 0.005*”Judgment” | + | 0.005*”bias” | + | 0.005*”autonomous” | + | 0.005*”drive” | + | 0.005*”development” | + | 0.005*”we” | |||||||
C [47] | 0.100*”data” | + | 0.025*”classification” | + | 0.022*”AI” | + | 0.018*”learning” | + | 0.018*”structured” | + | 0.016*”application” | + | 0.016*”attribute” | + | 0.015*”model” | + | 0.014*”viewpoint” | + | 0.012*”necessity” | + | 0.399 | √ | √ | ||
0.010*”use” | + | 0.010*”problem” | + | 0.009*”method” | + | 0.009*”solving” | + | 0.008*”rule” | + | 0.008*”representation” | + | 0.007*”analysis” | + | 0.007*”machine” | + | 0.007*”exist” | + | 0.007*”for” | + | ||||||
0.007*”criteria” | + | 0.007*”collection” | + | 0.006*”according” | + | 0.006*”through” | + | 0.006*”utilize” | + | 0.006*”create” | + | 0.006*”many” | + | 0.006*”input” | + | 0.006*”because” | + | 0.005*”human” | |||||||
0.078*”AI” | + | 0.030*”society” | + | 0.018*”learning” | + | 0.018*”ethics” | + | 0.016*”data” | + | 0.014*”application” | + | 0.014*”intelligence” | + | 0.013*”technology” | + | 0.012*”agent” | + | 0.011*”problem” | + | 0.372 | √ | √ | |||
0.011*”Judgment” | + | 0.011*”human” | + | 0.010*”bias” | + | 0.008*”for” | + | 0.008*”impact” | + | 0.008*”change” | + | 0.008*”occupation” | + | 0.007*”ability” | + | 0.007*”occur” | + | 0.007*”develop” | + | ||||||
0.007*”solving” | + | 0.007*”field” | + | 0.007*”mail” | + | 0.007*”result” | + | 0.007*”situation” | + | 0.006*”how” | + | 0.006*”task” | + | 0.006*”dilemma” | + | 0.005*”inference” | + | 0.005*”role” | |||||||
0.022*”search” | + | 0.018*”recognition” | + | 0.014*”data” | + | 0.013*”information” | + | 0.012*”knowledge” | + | 0.011*”sensor” | + | 0.011*”application” | + | 0.010*”method” | + | 0.010*”AI” | + | 0.010*”image” | + | 0.268 | √ | √ | |||
0.009*”learning” | + | 0.009*”representation” | + | 0.008*”human” | + | 0.008*”rule” | + | 0.008*”Judgment” | + | 0.008*”use” | + | 0.007*”through” | + | 0.007*”person” | + | 0.007*”technology” | + | 0.007*”utilize” | + | ||||||
0.007*”surrounding” | + | 0.007*”field” | + | 0.006*”according” | + | 0.006*”computer” | + | 0.006*”computer vision” | + | 0.006*”point” | + | 0.006*”assessment” | + | 0.005*”agent” | + | 0.005*”situation” | + | 0.005*”process” | |||||||
D [48] | 0.085*”data” | + | 0.048*”learning” | + | 0.044*”attribute” | + | 0.024*”model” | + | 0.020*”machine” | + | 0.015*”utilize” | + | 0.013*”classification” | + | 0.012*”use” | + | 0.012*”viewpoint” | + | 0.011*”relation” | + | 0.416 | √ | |||
0.010*”analysis” | + | 0.009*”function” | + | 0.009*”input” | + | 0.008*”ratings” | + | 0.008*”forecast” | + | 0.007*”necessity” | + | 0.007*”result” | + | 0.007*”examine” | + | 0.007*”for” | + | 0.007*”structured” | + | ||||||
0.006*”program” | + | 0.006*”create” | + | 0.006*”grasp” | + | 0.005*”form” | + | 0.005*”application” | + | 0.005*”new” | + | 0.005*”image” | + | 0.005*”what” | + | 0.005*”problem” | + | 0.005*”answer” | |||||||
0.057*”AI” | + | 0.042*”intelligence” | + | 0.038*”agent” | + | 0.019*”human” | + | 0.017*field” | + | 0.012*”learning” | + | 0.012*”role” | + | 0.010*”situation” | + | 0.010*”execute” | + | 0.009*”society” | + | 0.368 | √ | ||||
0.009*”individual” | + | 0.009*”occupation” | + | 0.008*”recognition” | + | 0.008*”application” | + | 0.008*”task” | + | 0.008*”technology” | + | 0.007*”not” | + | 0.007*”process” | + | 0.007*”understand” | + | 0.007*”person” | + | ||||||
0.007*”surrounding” | + | 0.007*”software” | + | 0.007*”change” | + | 0.007*”characteristics” | + | 0.006*”knowledge” | + | 0.006*”explain” | + | 0.006*”input” | + | 0.006*”repeat” | + | 0.006*”customer” | + | 0.006*”instead” | |||||||
0.050*”AI” | + | 0.028*”state” | + | 0.025*”search” | + | 0.016*”technology” | + | 0.014*”data” | + | 0.013*”recognition” | + | 0.013*”understand” | + | 0.011*”goal” | + | 0.011*”human” | + | 0.011*”ethics” | + | 0.334 | √ | √ | |||
0.010*”knowledge” | + | 0.009*”for” | + | 0.009*”image” | + | 0.009*”sensor” | + | 0.009*”use” | + | 0.009*”information” | + | 0.008*”person” | + | 0.008*”regarding” | + | 0.007*”method” | + | 0.006*”bias” | + | ||||||
0.006*”representation” | + | 0.006*”how” | + | 0.006*”application” | + | 0.006*”necessity” | + | 0.006*”situation” | + | 0.006*”next” | + | 0.006*”intelligence” | + | 0.006*”fair” | + | 0.005*”utilize” | + | 0.005*”field” | |||||||
E [49] | 0.087*”data” | + | 0.040*”model” | + | 0.034*”classification” | + | 0.022*”attribute” | + | 0.019*”AI” | + | 0.019*”learning” | + | 0.015*”generate” | + | 0.012*”problem” | + | 0.012*”use” | + | 0.011*”solving” | + | 0.424 | √ | √ | ||
0.011*”collection” | + | 0.010*”information” | + | 0.010*”necessity” | + | 0.010*”performance” | + | 0.009*”training” | + | 0.009*”structured” | + | 0.009*”for” | + | 0.008*”input” | + | 0.008*”according” | + | 0.008*”form” | + | ||||||
0.007*”application” | + | 0.007*”through” | + | 0.007*”next” | + | 0.006*”case” | + | 0.006*”test” | + | 0.006*”result” | + | 0.006*”viewpoint” | + | 0.006*”kind” | + | 0.005*”machine” | + | 0.005*”algorithm” | |||||||
0.078*”AI” | + | 0.040*”data” | + | 0.020*”bias” | + | 0.019*”society” | + | 0.019*”ethics” | + | 0.016*”application” | + | 0.014*”learning” | + | 0.012*”person” | + | 0.010*”kinds” | + | 0.009*”image” | + | 0.367 | √ | √ | √ | ||
0.009*”problem” | + | 0.009*”result” | + | 0.009*”human” | + | 0.008*”situation” | + | 0.008*”use” | + | 0.007*”developer” | + | 0.007*”emerge” | + | 0.007*”development” | + | 0.007*”case” | + | 0.006*”automobile” | + | ||||||
0.006*”dilemma” | + | 0.006*”process” | + | 0.006*”training” | + | 0.005*”fait” | + | 0.005*”develop” | + | 0.005*”occur” | + | 0.005*”track” | + | 0.005*”autonomous” | + | 0.005*”impact” | + | 0.005*”drive” | |||||||
0.031*”AI” | + | 0.026*”data” | + | 0.026*”leaning” | + | 0.018*”state” | + | 0.014*”search” | + | 0.013*”recognition” | + | 0.013*”agent” | + | 0.012*”intelligence” | + | 0.012*”through” | + | 0.011*”application” | + | 0.322 | √ | √ | |||
0.011*”problem” | + | 0.011*”human” | + | 0.009*”inference” | + | 0.009*”technology” | + | 0.009*”for” | + | 0.009*”neural network” | + | 0.009*”field” | + | 0.008*”image” | + | 0.007*”utilize” | + | 0.006*sensor” | + | ||||||
0.006*”process” | + | 0.006*”input” | + | 0.006*”person” | + | 0.006*”solving” | + | 0.006*”process” | + | 0.006*”forecast” | + | 0.006*”method” | + | 0.006*”next” | + | 0.005*”work” | + | 0.005*”understand” | |||||||
F [50] | 0.081*”data” | + | 0.036*”classification” | + | 0.035*”learning” | + | 0.027*”machine” | + | 0.022*”attribute” | + | 0.018*”model” | + | 0.015*”iris” | + | 0.012*”problem” | + | 0.011*”set” | + | 0.009*”label” | + | 0.415 | √ | √ | ||
0.009*”through” | + | 0.009*”next” | + | 0.009*”performance” | + | 0.009*”feature” | + | 0.009*”structured” | + | 0.009*”banana” | + | 0.008*”kinds” | + | 0.007*”case” | + | 0.007*”solving” | + | 0.007*”application” | + | ||||||
0.007*”forecast” | + | 0.007*”image” | + | 0.007*”necessity” | + | 0.007*”width” | + | 0.007*”rule” | + | 0.007*”input” | + | 0.006*”analysis” | + | 0.006*”difficult” | + | 0.006*”test” | + | 0.006*”training” | |||||||
0.083*”AI” | + | 0.022*”society” | + | 0.021*”ethics” | + | 0.020*”problem” | + | 0.019*”technology” | + | 0.018*”learning” | + | 0.018*”data” | + | 0.018*”human” | + | 0.015*”application” | + | 0.012*”solving” | + | 0.382 | √ | ||||
0.010*”occur” | + | 0.009*”develop” | + | 0.008*”for” | + | 0.008*”dilemma” | + | 0.008*”regarding” | + | 0.008*”system” | + | 0.008*”future” | + | 0.007*”user” | + | 0.007*”situation” | + | 0.007*”bias” | + | ||||||
0.006*”Judgment” | + | 0.006*”member” | + | 0.006*”service” | + | 0.006*”information” | + | 0.006*”fair” | + | 0.006*”intention” | + | 0.005*”through” | + | 0.005*”responsibility” | + | 0.005*”individual” | + | 0.005*”result” | |||||||
0.023*”AI” | + | 0.020*”learning” | + | 0.019*”state” | + | 0.016*data” | + | 0.012*”application” | + | 0.012*”recognition” | + | 0.012*”field” | + | 0.010*”information” | + | 0.010*”human” | + | 0.010*”agent” | + | 0.284 | √ | √ | |||
0.009*”classification” | + | 0.009*”intelligence” | + | 0.008*”search” | + | 0.008*”through” | + | 0.008*”forecast” | + | 0.008*”image” | + | 0.007*”create” | + | 0.007*”for” | + | 0.007*”technology” | + | 0.007*”rule” | + | ||||||
0.007*”machine” | + | 0.007*”utilize” | + | 0.007*”clustering” | + | 0.006*”understand” | + | 0.006*”sensor” | + | 0.006*”case” | + | 0.006*”apply” | + | 0.006*”problem” | + | 0.006*”process” | + | 0.005*”knowledge” | |||||||
G [51] | 0.084*”data” | + | 0.034*”classification” | + | 0.030*”model” | + | 0.028*”learning” | + | 0.019*”machine” | + | 0.017*”attribute” | + | 0.015*”problem” | + | 0.015*”structured” | + | 0.013*”widget” | + | 0.012*”iris” | + | 0.430 | √ | √ | ||
0.012*”image” | + | 0.010*”use” | + | 0.010*”message” | + | 0.010*”test” | + | 0.010*”confirmation” | + | 0.009*”performance” | + | 0.009*”for” | + | 0.008*”kinds” | + | 0.008*”solving” | + | 0.008*”kind” | + | ||||||
0.008*”training” | + | 0.008*”spam” | + | 0.007*”result” | + | 0.007*”assessment” | + | 0.007*”process” | + | 0.007*”AI” | + | 0.007*”petal” | + | 0.006*”form” | + | 0.006*”select” | + | 0.006*”new” | |||||||
0.046*”AI” | + | 0.032*”intelligence” | + | 0.026*”agent” | + | 0.015*”human” | + | 0.014*”behavior” | + | 0.010*”environment” | + | 0.010*”software” | + | 0.010*”information” | + | 0.009*”person” | + | 0.009*”field” | + | 0.298 | √ | √ | |||
0.008*”change” | + | 0.008*”occupation” | + | 0.007*”learning” | + | 0.007*”product” | + | 0.006*”necessity” | + | 0.006*”fast” | + | 0.006*”according” | + | 0.006*”user” | + | 0.006*”for” | + | 0.006*”role” | + | ||||||
0.006*”execute” | + | 0.005*”data” | + | 0.005*”machine” | + | 0.005*”recognition” | + | 0.005*”autonomous” | + | 0.005*”automation” | + | 0.005*”research” | + | 0.005*”search” | + | 0.005*”ability” | + | 0.005*”kinds” | |||||||
0.032*”AI” | + | 0.019*”data” | + | 0.018*”learning” | + | 0.012*”search” | + | 0.012*”human” | + | 0.010*”application” | + | 0.009*”recognition” | + | 0.008*”method” | + | 0.008*”machine” | + | 0.008*”use” | + | 0.262 | √ | √ | |||
0.008*”problem” | + | 0.007*”information” | + | 0.007*”classification” | + | 0.007*”representation” | + | 0.007*”result” | + | 0.007*”society” | + | 0.007*”knowledge” | + | 0.007*”word” | + | 0.007*”for” | + | 0.006*”image” | + | ||||||
0.006*”state” | + | 0.006*”sensor” | + | 0.006*”process” | + | 0.006*”ethics” | + | 0.006*”occur” | + | 0.006*”occur” | + | 0.005*”understand” | + | 0.005*”through” | + | 0.005*”technology” | + | 0.005*”not” | |||||||
H [52] | 0.053*”AI” | + | 0.031*”data” | + | 0.026*”society” | + | 0.025*”ethics” | + | 0.023*”problem” | + | 0.018*”bias” | + | 0.015*”for” | + | 0.012*”use” | + | 0.012*”fair” | + | 0.011*”dilemma” | + | 0.372 | √ | |||
0.010*”learning” | + | 0.010*”technology” | + | 0.010*”responsibility” | + | 0.009*”solving” | + | 0.009*”member” | + | 0.008*”person” | + | 0.008*”regarding” | + | 0.008*”because” | + | 0.007*”impact” | + | 0.007*”prejudice” | + | ||||||
0.006*”kinds” | + | 0.006*”result” | + | 0.006*”situation” | + | 0.006*”not” | + | 0.006*”occur” | + | 0.006*”necessity” | + | 0.006*”service” | + | 0.006*”effort” | + | 0.006*”difficult” | + | 0.006*”trust” | |||||||
0.039*”data” | + | 0.030*”learning” | + | 0.017*”model” | + | 0.016*”attribute” | + | 0.015*”AI” | + | 0.014*”problem” | + | 0.013*”classification” | + | 0.013*”machine” | + | 0.011*”method” | + | 0.010*”intelligence” | + | 0.322 | √ | √ | √ | ||
0.009*”we” | + | 0.009*”agent” | + | 0.009*”search” | + | 0.009*”application” | + | 0.008*”use” | + | 0.008*”solving” | + | 0.008*”person” | + | 0.008*”create” | + | 0.008*”image” | + | 0.007*”computer” | + | ||||||
0.007*”recognition” | + | 0.006*”human” | + | 0.006*”representation” | + | 0.006*”new” | + | 0.006*”forecast” | + | 0.006*”knowledge” | + | 0.006*”structured” | + | 0.006*”how” | + | 0.006*”class” | + | 0.006*”input” |
Frame | Textbook | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Area | Tool | A | B | C | D | E | F | G | H | |
1. Understanding of AI | Principles understanding support | Machine Learning for Kids | √ | |||||||
Scratch | √ | |||||||||
2. Principles and application of AI | Data processing | Quick, Draw! | √ | √ | √ | |||||
Mystery Animal | √ | |||||||||
Scroobly | √ | |||||||||
CLOVER OCR | √ | |||||||||
Teachable Machine | √ | √ | √ | |||||||
AI model development | Machine Learning for Kids | √ | ||||||||
Scratch | √ | |||||||||
ENTRY | √ | √ | √ | √ | √ | |||||
Colab | √ | √ | ||||||||
code.org | √ | √ | ||||||||
prolog | √ | √ | ||||||||
3. Data and machine learning | AI model and program development | Teachable Machine | √ | |||||||
ENTRY | √ | √ | √ | |||||||
Orange3 | √ | √ | √ | |||||||
Brightics AI | √ | |||||||||
Quick, Draw! | √ | |||||||||
Machine Learning for Kids | √ | |||||||||
Scratch | √ | |||||||||
Python (Colab) | √ | √ | √ | |||||||
4. Social impact of AI | AI ethics learning support | Moral Machine | √ | √ | √ | √ | √ | √ | √ | |
ENTRY | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Kim, J.; Lee, W. Analyzing the Alignment between AI Curriculum and AI Textbooks through Text Mining. Appl. Sci. 2023, 13, 10011. https://doi.org/10.3390/app131810011
Yang H, Kim J, Lee W. Analyzing the Alignment between AI Curriculum and AI Textbooks through Text Mining. Applied Sciences. 2023; 13(18):10011. https://doi.org/10.3390/app131810011
Chicago/Turabian StyleYang, Hyeji, Jamee Kim, and Wongyu Lee. 2023. "Analyzing the Alignment between AI Curriculum and AI Textbooks through Text Mining" Applied Sciences 13, no. 18: 10011. https://doi.org/10.3390/app131810011
APA StyleYang, H., Kim, J., & Lee, W. (2023). Analyzing the Alignment between AI Curriculum and AI Textbooks through Text Mining. Applied Sciences, 13(18), 10011. https://doi.org/10.3390/app131810011