Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Testing Procedure
2.2. Damaged Region Classification (R-Class)
2.3. Damage Size Classification (S-Class)
3. ML Algorithm Steps
3.1. Signal Pre-Processing (Denoising)
3.2. Feature Extraction
3.3. Feature Selection
4. Classification and Results
4.1. R-Classification
4.2. S-Classification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rezazadeh, N.; De Luca, A.; Lamanna, G.; Caputo, F. Diagnosing and Balancing Approaches of Bowed Rotating Systems: A Review. Appl. Sci. 2022, 12, 9157. [Google Scholar] [CrossRef]
- Liao, B.; Du, Y.; Zheng, J.; Wang, D.; Lin, Y.; Tao, R.; Zhou, C. Prediction of Residual Burst Strength for Composite Pressure Vessels after Low Velocity Impact. Int. J. Hydrog. Energy 2020, 45, 10962–10976. [Google Scholar] [CrossRef]
- Mirbagheri, M.; Rahmani, O.; Mirbagheri, Y. Estimation of Residual Tensile Strength of Composite Laminate after Low-Velocity Impact Using Visually Inspection. Eng. Fail. Anal. 2022, 131, 105898. [Google Scholar] [CrossRef]
- Mustapha, S.; Ye, L.; Dong, X.-J.; Makki Alamdari, M. Evaluation of Barely Visible Indentation Damage (BVID) in CF/EP Sandwich Composites Using Guided Wave Signals. Mech. Syst. Signal Process. 2016, 76–77, 497–517. [Google Scholar] [CrossRef]
- Dziendzikowski, M.; Kurnyta, A.; Dragan, K.; Kłysz, S.; Leski, A. In Situ Barely Visible Impact Damage Detection and Localization for Composite Structures Using Surface Mounted and Embedded PZT Transducers: A Comparative Study. Mech. Syst. Signal Process. 2016, 78, 91–106. [Google Scholar] [CrossRef]
- Wronkowicz-Katunin, A.; Katunin, A.; Dragan, K. Reconstruction of Barely Visible Impact Damage in Composite Structures Based on Non-Destructive Evaluation Results. Sensors 2019, 19, 4629. [Google Scholar] [CrossRef]
- Perfetto, D.; Khodaei, Z.S.; Luca, A.D.; Aliabadi, M.H.; Caputo, F. Experiments and Modelling of Ultrasonic Waves in Composite Plates under Varying Temperature. Ultrasonics 2022, 126, 106820. [Google Scholar] [CrossRef]
- Perfetto, D.; Lamanna, G.; Petrone, G.; Fenza, A.D.; Luca, A.D. A Modelling Technique to Investigate the Effects of Quasi-Static Loads on Guided-Wave Based Structural Health Monitoring Systems. Forces Mech. 2022, 9, 100125. [Google Scholar] [CrossRef]
- Ghobadi, A. Common Type of Damages in Composites and Their Inspections. World J. Mech. 2017, 7, 24–33. [Google Scholar] [CrossRef]
- Kralovec, C.; Schagerl, M. Review of Structural Health Monitoring Methods Regarding a Multi-Sensor Approach for Damage Assessment of Metal and Composite Structures. Sensors 2020, 20, 826. [Google Scholar] [CrossRef]
- David-West, O.; Amafabia, D.; Haritos, G.; Montalvao, D. A Review of Structural Health Monitoring Techniques as Applied to Composite Structures. Struct. Durab. Health Monit. 2017, 11, 91–147. [Google Scholar] [CrossRef]
- De Luca, A.; Perfetto, D.; Polverino, A.; Minardo, A.; Caputo, F. Development and Validation of a Probabilistic Multistage Algorithm for Damage Localization in Piezo-Monitored Structures. Smart Mater. Struct. 2023, 32, 085015. [Google Scholar] [CrossRef]
- Rautela, M.; Gopalakrishnan, S. Ultrasonic Guided Wave Based Structural Damage Detection and Localization Using Model Assisted Convolutional and Recurrent Neural Networks. Expert Syst. Appl. 2020, 167, 114189. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L. Identification of Damage Using Lamb Waves: From Fundamentals to Applications, 1st ed.; Lecture Notes in Applied and Computational Mechanics; Springer Science & Business Media: London, UK, 2009; Volume 48, ISBN 978-1-84882-784-4. [Google Scholar]
- Giurgiutiu, V. Structural Health Monitoring with Piezoelectric Wafer Active Sensors--Predictive Modeling and Simulation. INCAS Bull. 2010, 2, 31–44. [Google Scholar] [CrossRef]
- Hameed, M.S.; Li, Z.; Chen, J.; Qi, J. Lamb-Wave-Based Multistage Damage Detection Method Using an Active PZT Sensor Network for Large Structures. Sensors 2019, 19, 2010. [Google Scholar] [CrossRef]
- Huang, L.; Zeng, L.; Lin, J.; Luo, Z. An Improved Time Reversal Method for Diagnostics of Composite Plates Using Lamb Waves. Compos. Struct. 2018, 190, 10–19. [Google Scholar] [CrossRef]
- Colombo, A.; Negro, P. A Damage Index of Generalised Applicability. Eng. Struct. 2005, 27, 1164–1174. [Google Scholar] [CrossRef]
- Falcetelli, F.; Venturini, N.; Romero, M.B.; Martinez, M.J.; Pant, S.; Troiani, E. Broadband Signal Reconstruction for SHM: An Experimental and Numerical Time Reversal Methodology. J. Intell. Mater. Syst. Struct. 2021, 32, 1043–1058. [Google Scholar] [CrossRef]
- Su, Z.; Ye, L.; Lu, Y. Guided Lamb Waves for Identification of Damage in Composite Structures: A Review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Avci, O.; Abdeljaber, O.; Kiranyaz, S.; Hussein, M.; Gabbouj, M.; Inman, D.J. A Review of Vibration-Based Damage Detection in Civil Structures: From Traditional Methods to Machine Learning and Deep Learning Applications. Mech. Syst. Signal Process. 2021, 147, 107077. [Google Scholar] [CrossRef]
- Tibaduiza, D.-A.; Torres-Arredondo, M.-A.; Mujica, L.E.; Rodellar, J.; Fritzen, C.-P. A Study of Two Unsupervised Data Driven Statistical Methodologies for Detecting and Classifying Damages in Structural Health Monitoring. Mech. Syst. Signal Process. 2013, 41, 467–484. [Google Scholar] [CrossRef]
- Abbassi, A.; Römgens, N.; Tritschel, F.F.; Penner, N.; Rolfes, R. Evaluation of Machine Learning Techniques for Structural Health Monitoring Using Ultrasonic Guided Waves under Varying Temperature Conditions. Struct. Health Monit. 2022, 22, 1308–1325. [Google Scholar] [CrossRef]
- Rai, A.; Mitra, M. A Hybrid Physics-Assisted Machine-Learning-Based Damage Detection Using Lamb Wave. Sādhanā 2021, 46, 64. [Google Scholar] [CrossRef]
- Perfetto, D.; De Luca, A.; Perfetto, M.; Lamanna, G.; Caputo, F. Damage Detection in Flat Panels by Guided Waves Based Artificial Neural Network Trained through Finite Element Method. Materials 2021, 14, 7602. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pan, H.; Wang, X.; Lin, Z. Machine Learning-Enriched Lamb Wave Approaches for Automated Damage Detection. Sensors 2020, 20, 1790. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Mitra, M. Lamb Wave Based Damage Detection Using Orthogonal Matching Pursuit and Artificial Neural Network. In Proceedings of the 8th International Symposium on NDT in Aerospace, Bangalore, India, 3–5 November 2016; Volume 22. Special Issue of e-Journal of Nondestructive Testing. [Google Scholar]
- Melville, J.; Alguri, K.S.; Deemer, C.; Harley, J.B. Structural Damage Detection Using Deep Learning of Ultrasonic Guided Waves. In Proceedings of the AIP Conference, Maharashtra, India, 5–6 July 2018; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1949, p. 230004. [Google Scholar]
- Sampath, S.; Jang, J.; Sohn, H. Ultrasonic Lamb Wave Mixing Based Fatigue Crack Detection Using a Deep Learning Model and Higher-Order Spectral Analysis. Int. J. Fatigue 2022, 163, 107028. [Google Scholar] [CrossRef]
- Gao, F.; Hua, J. Damage Characterization Using CNN and SAE of Broadband Lamb Waves. Ultrasonics 2022, 119, 106592. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lim, H.J.; Skinner, T.; Chattopadhyay, A.; Hall, A. Automated Fatigue Damage Detection and Classification Technique for Composite Structures Using Lamb Waves and Deep Autoencoder. Mech. Syst. Signal Process. 2022, 163, 108148. [Google Scholar] [CrossRef]
- Chiachío, J.; Bochud, N.; Chiachío, M.; Cantero, S.; Rus, G. A Multilevel Bayesian Method for Ultrasound-Based Damage Identification in Composite Laminates. Mech. Syst. Signal Process. 2017, 88, 462–477. [Google Scholar] [CrossRef]
- Dipietrangelo, F.; Nicassio, F.; Scarselli, G. Structural Health Monitoring for Impact Localisation via Machine Learning. Mech. Syst. Signal Process. 2023, 183, 109621. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-Driven Structural Health Monitoring and Damage Detection through Deep Learning: State-of-the-Art Review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Wang, Y.; Ram Ramakrishnan, K.; Zhang, Z. A Comparison of Machine Learning Algorithms for Assessment of Delamination in Fiber-Reinforced Polymer Composite Beams. Struct. Health Monit. 2021, 20, 1997–2012. [Google Scholar] [CrossRef]
- Viotti, I.D.; Gomes, G.F. Delamination Identification in Sandwich Composite Structures Using Machine Learning Techniques. Comput. Struct. 2023, 280, 106990. [Google Scholar] [CrossRef]
- Rabcan, J.; Levashenko, V.; Zaitseva, E.; Kvassay, M.; Subbotin, S. Application of Fuzzy Decision Tree for Signal Classification. IEEE Trans. Ind. Inform. 2019, 15, 5425–5434. [Google Scholar] [CrossRef]
- Agrawal, P.; Jayaswal, P. A Review of Fault Detection, Diagnosis, and Prognosis of Rolling Element Bearing Using Advanced Approaches and Vibration Signature Analysis. In Reliability and Risk Assessment in Engineering; Gupta, V.K., Varde, P.V., Kankar, P.K., Joshi, N., Eds.; Springer: Singapore, 2020; pp. 207–219. [Google Scholar]
- Bekara, M.; Baan, M. Random and Coherent Noise Attenuation by Empirical Mode Decomposition. Geophysics 2009, 74, V89–V98. [Google Scholar] [CrossRef]
- Xie, L.; Yang, G.; Xu, L.; Seoane, F.; Chen, Q.; Zheng, L. Characterization of Dry Biopotential Electrodes; IEEE: Osaka, Japan, 2013; pp. 1478–1481. [Google Scholar]
- Jagtap, S.K.; Uplane, M.D. The Impact of Digital Filtering to ECG Analysis: Butterworth Filter Application; IEEE: Mumbai, Maharashtra, 2012; pp. 1–6. [Google Scholar]
- Cvetkovic, D.; Übeyli, E.D.; Cosic, I. Wavelet Transform Feature Extraction from Human PPG, ECG, and EEG Signal Responses to ELF PEMF Exposures: A Pilot Study. Digit. Signal Process. 2008, 18, 861–874. [Google Scholar] [CrossRef]
- Al-Fahoum, A.S.; Al-Fraihat, A.A. Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains. ISRN Neurosci. 2014, 2014, 730218. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, F.; Verma, B.; Asafuddoula, M.D. Impact of Automatic Feature Extraction in Deep Learning Architecture. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–8. [Google Scholar]
- Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160. [Google Scholar] [CrossRef]
- De-La-Bandera, I.; Palacios, D.; Mendoza, J.; Barco, R. Feature Extraction for Dimensionality Reduction in Cellular Networks Performance Analysis. Sensors 2020, 20, 6944. [Google Scholar] [CrossRef]
- Khaire, U.M.; Dhanalakshmi, R. Stability of Feature Selection Algorithm: A Review. J. King Saud. Univ.-Comput. Inf. Sci. 2022, 34, 1060–1073. [Google Scholar] [CrossRef]
- Ying, X. An Overview of Overfitting and Its Solutions. J. Phys. Conf. Ser. 2019, 1168, 022022. [Google Scholar] [CrossRef]
- Zhou, N.; Wang, L. A Modified T-Test Feature Selection Method and Its Application on the HapMap Genotype Data. Genom. Proteom. Bioinform. 2007, 5, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Rezazadeh, N.; De Luca, A.; Perfetto, D. Unbalanced, Cracked, and Misaligned Rotating Machines: A Comparison between Classification Procedures throughout the Steady-State Operation. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 450. [Google Scholar] [CrossRef]
- Rezazadeh, N.; de Oliveira, M.; Perfetto, D.; De Luca, A.; Caputo, F. Classification of Unbalanced and Bowed Rotors under Uncertainty Using Wavelet Time Scattering, LSTM, and SVM. Appl. Sci. 2023, 13, 6861. [Google Scholar] [CrossRef]
Material Property | Symbol | Units | CFRP Lamina | PZT |
---|---|---|---|---|
Mass density | ||||
Longitudinal Young’s modulus | ||||
Transversal Young’s modulus | ||||
Transversal Young’s modulus | ||||
Shear modulus | ||||
Shear modulus | ||||
Shear modulus | ||||
Poisson’s ratio | ||||
Poisson’s ratio | ||||
Poisson’s ratio |
Number | Name of the Feature | Number | Name of the Feature |
---|---|---|---|
1 | Shape factor | 16 | Maximum fractal length (MFL) |
2 | Kurtosis | 17 | Logarithmic representation of Teager-Kaiser energy operator (LTKEO) |
3 | Skewness | 18 | Spurious free dynamic range (SFDR) |
4 | Peak value | 19 | Band power |
5 | Crest factor | 20 | Amplitude of the first frequency harmonic (AFFH) |
6 | Impulse factor | 21 | Frequency of the first frequency harmonic (FFFH) |
7 | Clearance factor | 22 | Second root of the summation of the power values of persistence spectrum (SRPVPS) |
8 | Signal-to-noise ratio (SNR) | 23 | Mean value of the wavelet approximation coefficients in level 4 (MAPP4) |
9 | Total harmonic distortion (THD) | 24 | Mean value of the wavelet detail coefficients in level 1 (MDET1) |
10 | Signal to noise and distortion ratio (SINAD) | 25 | Shannon entropy |
11 | Difference absolute standard deviation value (DASDV) | 26 | Difference absolute mean value (DAMV) |
12 | Logarithmic representation of DASDV (LDASDV) | 27 | Waveform length |
13 | Variance | 28 | Teager–Kaiser energy operator (TKEO) |
14 | Standard deviation (SD) | 29 | Logarithm transformation of DAMV (LDAMV) |
15 | Mean absolute deviation (MAD) | 30 | Median |
Number | Name of the Feature | Number of the Sensor |
---|---|---|
1 | SNR | S2 |
2 | SINAD | S2 |
3 | DASDV | S2 |
4 | Shannon entropy | S2 |
5 | Crest factor | S3 |
6 | Clearance factor | S3 |
7 | SINAD | S3 |
8 | SFDR | S3 |
9 | Shannon entropy | S3 |
Number | Name of the Feature | Number of the Sensor |
---|---|---|
1 | Shape factor | S4 |
2 | Kurtosis | S4 |
3 | Crest factor | S4 |
4 | SNR | S4 |
5 | SINAD | S4 |
6 | DASDV | S4 |
7 | Kurtosis | S5 |
8 | LDASDV | S5 |
9 | Variance | S5 |
10 | SD | S5 |
11 | Band power | S5 |
12 | Shannon entropy | S5 |
Number | Name of the Feature | Number of the Sensor |
---|---|---|
1 | DASDV | S2 |
2 | DASDV | S3 |
3 | Waveform length | S3 |
4 | Waveform length | S4 |
5 | Variance | S4 |
6 | MAD | S3 |
7 | MFL | S2 |
8 | MFL | S5 |
9 | TKEO | S3 |
10 | TKEO | S4 |
11 | LDAMV | S4 |
12 | Median | S3 |
13 | Median | S4 |
Classification Algorithm | Validation Accuracy (%) | Testing Accuracy (%) |
---|---|---|
Ensemble-Subspace KNN | 94.65 | 98.15 |
Ensemble-Bagged Trees | 94.2 | 98.15 |
KNN-Fine KNN | 93.6 | 96.3 |
Ensemble-Boosted Trees | 93.4 | 98.15 |
Kernel-SVM Kernel | 92.8 | 98.15 |
Linear Discriminant | 92.4 | 94.4 |
SVM-Quadratic SVM | 92.2 | 94.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perfetto, D.; Rezazadeh, N.; Aversano, A.; De Luca, A.; Lamanna, G. Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach. Appl. Sci. 2023, 13, 10017. https://doi.org/10.3390/app131810017
Perfetto D, Rezazadeh N, Aversano A, De Luca A, Lamanna G. Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach. Applied Sciences. 2023; 13(18):10017. https://doi.org/10.3390/app131810017
Chicago/Turabian StylePerfetto, Donato, Nima Rezazadeh, Antonio Aversano, Alessandro De Luca, and Giuseppe Lamanna. 2023. "Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach" Applied Sciences 13, no. 18: 10017. https://doi.org/10.3390/app131810017
APA StylePerfetto, D., Rezazadeh, N., Aversano, A., De Luca, A., & Lamanna, G. (2023). Composite Panel Damage Classification Based on Guided Waves and Machine Learning: An Experimental Approach. Applied Sciences, 13(18), 10017. https://doi.org/10.3390/app131810017