Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage
Abstract
:1. Introduction
2. Fatigue Damage
2.1. Fatigue Damage Accumulation
2.2. Weibull Analysis
2.3. Weibull Fatigue Damage Analysis
3. Numerical Application
3.1. Fatigue Damage Accumulation
3.2. Weibull Fatigue Damage Analysis
4. Median Rank Approach
5. Discussion
6. Conclusions
- A probabilistic alternative of the Weibull distribution to vibration fatigue analysis is developed, which allows it to define reliability and probability of failure.
- Contrary to other models that use the median rank method as the cumulated failure percentile, the proposed methodology considers the accumulated fatigue damage for a platform in which the component’s probabilistic life, the probability of failure, and the reliability index are estimated.
- A methodology is developed based on the model presented to permit a probabilistic approach to vibration fatigue damage accumulation which allows the probabilistic failure and reliability estimation for mechanical components and structures subjected to variable amplitude loading, specifically random vibration.
- The model and methodology included in this work are applied to mechanical components used in the telecommunication industry to assist in real and practical structural fatigue analysis.
- An application case is selected to illustrate the proposed Weibull model and its parameter estimation methodology based on the cumulated vibration damage included in this paper.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sosnovskiy, L. Tribo Fatigue; Springer: New York, NY, USA, 2005. [Google Scholar]
- Piña-Monarrez, M.R. Weibull analysis for normal/accelerated and fatigue random vibration test. Qual. Reliab. Eng. Int. 2019, 35, 2408–2428. [Google Scholar] [CrossRef]
- Mršnik, M.; Slavič, J.; Boltežar, M. Frequency-domain methods for a vibration-fatigue-life estimation—Application to real data. Int. J. Fatigue 2013, 47, 8–17. [Google Scholar] [CrossRef]
- Zaitseva, E.; Levashenko, V.; Rabcan, J. A new method for analysis of Multi-State systems based on Multi-valued decision diagram under epistemic uncertainty. Reliab. Eng. Syst. Saf. 2023, 229, 108868. [Google Scholar] [CrossRef]
- Isametova, M.E.; Nussipali, R.; Martyushev, N.V.; Malozyomov, B.V.; Efremenkov, E.A.; Isametov, A. Mathematical Modeling of the Reliability of Polymer Composite Materials. Mathematics 2022, 10, 3978. [Google Scholar] [CrossRef]
- Martyushev, N.V.; Malozyomov, B.V.; Sorokova, S.N.; Efremenkov, E.A.; Valuev, D.V.; Qi, M. Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport. Mathematics 2023, 11, 3317. [Google Scholar] [CrossRef]
- Benaroya, H.; Han, S.M. Probability Models in Engineering and Science; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2005. [Google Scholar]
- Shimokawa, T.; Tanaka, S. A statistical consideration of Miner’s rule. Int. J. Fatigue 1980, 2, 165–170. [Google Scholar] [CrossRef]
- Sun, Q.; Dui, H.N.; Fan, X.L. A statistically consistent fatigue damage model based on Miner’s rule. Int. J. Fatigue 2014, 69, 16–21. [Google Scholar] [CrossRef]
- Castillo, E.; Fernandez-Canteli, A. A Unified Statistical Methodology for Modeling Fatigue Damage; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Harlow, D.G. Statistical Modeling for Fatigue Life. Metals 2023, 13, 1419. [Google Scholar] [CrossRef]
- Pinto, J.M.A.; Pujol, J.C.F.; Cimini, C.A. Probabilistic cumulative damage model to estimate fatigue life. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 85–94. [Google Scholar] [CrossRef]
- Rinne, H. The Weibull Distribution: A Handbook; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Batsoulas, N.D. Cumulative Fatigue Damage: CDM-Based Engineering Rule and Life Prediction Aspect. Steel Res. Int. 2016, 87, 1670–1677. [Google Scholar] [CrossRef]
- Abdullah, S.; Beden, S.M.; Ariffin, A.K.; Rahman, M.M. Fatigue Life Assessment for Metallic Structure: A Case Study of Shell Structure under Variable Amplitude Loading. J. Appl. Sci. 2008, 8, 1622–1631. [Google Scholar] [CrossRef]
- Burhan, I.; Kim, H. S-N Curve Models for Composite Materials Characterization: An Evaluative Review. J. Compos. Sci. 2018, 2, 38. [Google Scholar] [CrossRef]
- Barraza-Contreras, J.M.; Piña-Monarrez, M.R.; Molina, A.; Torres-Villaseñor, R.C. Random Vibration Fatigue Analysis Using a Nonlinear Cumulative Damage Model. Appl. Sci. 2022, 12, 4310. [Google Scholar] [CrossRef]
- ASTM E1049-85; ASTM International Standard Practices for Cycle Counting in Fatigue Analysis. ASTM International Standard: West Conshohocken, PA, USA, 2017.
- Usabiaga, H.; Muniz-Calvente, M.; Ramalle, M.; Urresti, I.; Fernández Canteli, A. Improving with probabilistic and scale features the Basquin linear and bi-linear fatigue models. Eng. Fail. Anal. 2020, 116, 104728. [Google Scholar] [CrossRef]
- Irvine, T. A Fatigue Damage Spectrum Method for Comparing Power Spectral Density Base Input Specifications. Vibrationdata. 2014. Available online: https://vibrationdata.wordpress.com/ (accessed on 28 July 2023).
- Harris, C.M.; Piersol, A.G. Shock and Vibration Handbook, 5th ed.; McGraw Hill: New York, NY, USA, 2002; Volume 15, No. 9. [Google Scholar] [CrossRef]
- Manson, S.S.; Halford, G.R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int. J. Fract. 1981, 17, 169–192. [Google Scholar] [CrossRef]
- Weibull, W. A Statistical Theory of the Strength of Materials; Generalstabens Litografiska Anstalts Förlag: Stockholm, Sweden, 1939. [Google Scholar]
- Harikrishnan, R.; Mohite, P.M.; Upadhyay, C.S. Generalized Weibull model-based statistical tensile strength of carbon fibres. Arch. Appl. Mech. 2018, 88, 1617–1636. [Google Scholar] [CrossRef]
- Melikayeva, I.; Riesch-Oppermann, H.; Govorukha, V.B.; Kraft, O. A generalized Weibull approach to interface failure in bi-material ceramic joints. Arch. Appl. Mech. 2011, 81, 1585–1596. [Google Scholar] [CrossRef]
- Choi, S.-K.; Grandhi, R.V.; Canfield, R.A. Reliability-Based Structural Design; Springer-Verlag: London, UK, 2006. [Google Scholar]
- Barraza-Contreras, J.M.; Piña-Monarrez, M.R.; Molina, A. Fatigue-life prediction of mechanical element by using the Weibull distribution. Appl. Sci. 2020, 10, 6384. [Google Scholar] [CrossRef]
- Piña-Monarrez, M.R. Weibull stress distribution for static mechanical stress and its stress/strength analysis. Qual. Reliab. Eng. Int. 2018, 34, 229–244. [Google Scholar] [CrossRef]
- Lee, Y.-L.; Pan, J.; Hathaway, R.B.; Barkey, M.E. Fatigue Testing and Analysis: Theory and Practice; Elsevier Butter-worth-Heinemann: Burlington, MA, USA, 2005. [Google Scholar]
- Mischke, C.R. Predicting Fatigue Endurance Strengths for High- and Low-Cycle Fatigue. J. Mech. Des. 1982, 104, 653–660. [Google Scholar] [CrossRef]
- Dias, J.P.; Ekwaro-Osire, S.; Cunha, A., Jr.; Dabetwar, S.; Nispel, A.; Alemayehu, F.M.; Endeshaw, H.B. Parametric probabilistic approach for cumulative fatigue damage using double linear damage rule considering limited data. Int. J. Fatigue 2019, 127, 246–258. [Google Scholar] [CrossRef]
Frequency (Hz) | Accel. Response (G) | Dynamic Factor Equation (2) | Vibration Stress Equation (1) | Applied Vibration Cycles | Total Cycles Equation (4) |
---|---|---|---|---|---|
10 | 0.72 | 22.22 | 15.99 | 70,384 | 1.36 × 1020 |
20 | 2.65 | 58.86 | 140,195 | 3.04 × 1013 | |
30 | 5.62 | 124.84 | 92,619 | 4.42 × 109 | |
40 | 9.17 | 203.69 | 10,807 | 1.40 × 107 | |
50 | 13.72 | 304.76 | 2921 | 1.23 × 105 | |
55 | 12.36 | 274.55 | 762 | 4.20 × 105 |
10 Hz | 20 Hz | 30 Hz | 40 Hz | 50 Hz | 55 Hz | |
---|---|---|---|---|---|---|
Block No. | D1 | D1+2 | D1+2+3 | D1+2+3+4 | D1+2+3+4+5 | D1+2+3+4+5+6 |
1 (2 h) | 5.18 × 10−16 | 5.18 × 10−16 | 5.20 × 10−16 | 5.73 × 10−16 | 2.37 × 10−2 | 2.00 × 10−2 |
2 (2 h) | 2.00 × 10−2 | 2.42 × 10−2 | 2.42 × 10−2 | 2.42 × 10−2 | 4.84 × 10−2 | 5.00 × 10−2 |
3 (2 h) | 5.00 × 10−2 | 4.91 × 10−2 | 4.93 × 10−2 | 5.01 × 10−2 | 7.38 × 10−2 | 7.00 × 10−2 |
4 (2 h) | 7.00 × 10−2 | 7.49 × 10−2 | 7.51 × 10−2 | 7.63 × 10−2 | 1.00 × 10−1 | 1.00 × 10−1 |
5 (2 h) | 1.00 × 10−1 | 1.01 × 10−1 | 1.02 × 10−1 | 1.03 × 10−1 | 1.27 × 10−1 | 1.30 × 10−1 |
6 (2 h) | 1.30 × 10−1 | 1.29 × 10−1 | 1.29 × 10−1 | 1.31 × 10−1 | 1.55 × 10−1 | 1.60 × 10−1 |
7 (2 h) | 1.60 × 10−1 | 1.56 × 10−1 | 1.57 × 10−1 | 1.59 × 10−1 | 1.83 × 10−1 | 1.90 × 10−1 |
8 (2 h) | 1.90 × 10−1 | 1.85 × 10−1 | 1.86 × 10−1 | 1.89 × 10−1 | 2.12 × 10−1 | 2.10 × 10−1 |
9 (2 h) | 2.10 × 10−1 | 2.14 × 10−1 | 2.15 × 10−1 | 2.18 × 10−1 | 2.42 × 10−1 | 2.40 × 10−1 |
10 (2 h) | 2.40 × 10−1 | 2.45 × 10−1 | 2.45 × 10−1 | 2.49 × 10−1 | 2.73 × 10−1 | 2.80 × 10−1 |
11 (2 h) | 2.80 × 10−1 | 2.76 × 10−1 | 2.76 × 10−1 | 2.81 × 10−1 | 3.04 × 10−1 | 3.10 × 10−1 |
12 (2 h) | 3.10 × 10−1 | 3.07 × 10−1 | 3.08 × 10−1 | 3.13 × 10−1 | 3.37 × 10−1 | 3.40 × 10−1 |
13 (2 h) | 3.40 × 10−1 | 3.40 × 10−1 | 3.41 × 10−1 | 3.46 × 10−1 | 3.70 × 10−1 | 3.70 × 10−1 |
14 (2 h) | 3.70 × 10−1 | 3.73 × 10−1 | 3.74 × 10−1 | 3.80 × 10−1 | 4.03 × 10−1 | 4.10 × 10−1 |
15 (2 h) | 4.10 × 10−1 | 4.07 × 10−1 | 4.08 × 10−1 | 4.14 × 10−1 | 4.38 × 10−1 | 4.40 × 10−1 |
16 (2 h) | 4.40 × 10−1 | 4.42 × 10−1 | 4.43 × 10−1 | 4.50 × 10−1 | 4.73 × 10−1 | 4.80 × 10−1 |
17 (2 h) | 4.80 × 10−1 | 4.77 × 10−1 | 4.79 × 10−1 | 4.86 × 10−1 | 5.10 × 10−1 | 5.10 × 10−1 |
18 (2 h) | 5.10 × 10−1 | 5.14 × 10−1 | 5.15 × 10−1 | 5.23 × 10−1 | 5.47 × 10−1 | 5.50 × 10−1 |
19 (2 h) | 5.50 × 10−1 | 5.51 × 10−1 | 5.53 × 10−1 | 5.61 × 10−1 | 5.85 × 10−1 | 5.90 × 10−1 |
20 (2 h) | 5.90 × 10−1 | 5.89 × 10−1 | 5.91 × 10−1 | 6.00 × 10−1 | 6.24 × 10−1 | 6.30 × 10−1 |
21 (2 h) | 6.30 × 10−1 | 6.29 × 10−1 | 6.30 × 10−1 | 6.40 × 10−1 | 6.63 × 10−1 | 6.70 × 10−1 |
22 (2 h) | 6.70 × 10−1 | 6.68 × 10−1 | 6.70 × 10−1 | 6.80 × 10−1 | 7.04 × 10−1 | 7.10 × 10−1 |
23 (2 h) | 7.10 × 10−1 | 7.09 × 10−1 | 7.11 × 10−1 | 7.22 × 10−1 | 7.45 × 10−1 | 7.50 × 10−1 |
24 (2 h) | 7.50 × 10−1 | 7.51 × 10−1 | 7.53 × 10−1 | 7.64 × 10−1 | 7.88 × 10−1 | 7.90 × 10−1 |
25 (2 h) | 7.90 × 10−1 | 7.94 × 10−1 | 7.96 × 10−1 | 8.08 × 10−1 | 8.31 × 10−1 | 8.40 × 10−1 |
26 (2 h) | 8.40 × 10−1 | 8.37 × 10−1 | 8.40 × 10−1 | 8.52 × 10−1 | 8.76 × 10−1 | 8.80 × 10−1 |
27 (2 h) | 8.80 × 10−1 | 8.82 × 10−1 | 8.85 × 10−1 | 8.97 × 10−1 | 9.21 × 10−1 | 9.30 × 10−1 |
28 (2 h) | 9.30 × 10−1 | 9.28 × 10−1 | 9.30 × 10−1 | 9.44 × 10−1 | 9.67 × 10−1 | 9.70 × 10−1 |
29 (2 h) | 9.70 × 10−1 | 9.74 × 10−1 | 9.77 × 10−1 | 9.91 × 10−1 | 1.01 × 100 | 1.02 × 100 |
ni | Damage (Di) Equation (5) | R (Di) Equation (12) | Yi Equation (13) | µy Equation (14) | R(t) Equation (20) | toi Equation (15) | σ2i Equation (16) | σ1i Equation (17) | F(t) Equation (7) |
---|---|---|---|---|---|---|---|---|---|
1 | 0.0242 | 0.9758 | −3.7106 | −0.1280 | 0.9758 | 0.0170 | 1.1843 | 4114.9115 | 0.0242 |
2 | 0.0491 | 0.9509 | −2.9881 | −0.1030 | 0.9509 | 0.0375 | 2.6192 | 1860.5420 | 0.0491 |
0.0500 | 0.9500 | −2.9702 | −0.1024 | 0.9500 | 0.0383 | 2.6712 | 1824.3190 | 0.0500 | |
3 | 0.0749 | 0.9251 | −2.5535 | −0.0881 | 0.9251 | 0.0605 | 4.2219 | 1154.2363 | 0.0749 |
4 | 0.1013 | 0.8987 | −2.2366 | −0.0771 | 0.8987 | 0.0857 | 5.9806 | 814.8266 | 0.1013 |
5 | 0.1285 | 0.8715 | −1.9838 | −0.0684 | 0.8715 | 0.1131 | 7.8951 | 617.2292 | 0.1285 |
0.1740 | 0.8260 | −1.6548 | −1.8180 | 0.8260 | 0.1623 | 11.3328 | 430.0000 | 0.1740 | |
6 | 0.1564 | 0.8436 | −1.7713 | −0.0611 | 0.8436 | 0.1428 | 9.9713 | 488.7123 | 0.1564 |
7 | 0.1851 | 0.8149 | −1.5863 | −0.0547 | 0.8149 | 0.1750 | 12.2184 | 398.8335 | 0.1851 |
8 | 0.2145 | 0.7855 | −1.4212 | −0.0490 | 0.7855 | 0.2098 | 14.6488 | 332.6637 | 0.2145 |
0.2301 | 0.7699 | −1.3414 | −1.4738 | 0.7699 | 0.2291 | 15.9900 | 304.7600 | 0.2301 | |
9 | 0.2446 | 0.7554 | −1.2709 | −0.0438 | 0.7554 | 0.2475 | 17.2778 | 282.0444 | 0.2446 |
10 | 0.2756 | 0.7244 | −1.1321 | −0.0390 | 0.7244 | 0.2883 | 20.1243 | 242.1505 | 0.2756 |
11 | 0.3072 | 0.6928 | −1.0023 | −0.0346 | 0.6928 | 0.3325 | 23.2107 | 209.9507 | 0.3072 |
12 | 0.3397 | 0.6603 | −0.8794 | −0.0303 | 0.6603 | 0.3805 | 26.5641 | 183.4471 | 0.3397 |
13 | 0.3729 | 0.6271 | −0.7621 | −0.0263 | 0.6271 | 0.4329 | 30.2170 | 161.2704 | 0.3729 |
14 | 0.4069 | 0.5931 | −0.6492 | −0.0224 | 0.5931 | 0.4900 | 34.2089 | 142.4515 | 0.4069 |
15 | 0.4418 | 0.5582 | −0.5396 | −0.0186 | 0.5582 | 0.5528 | 38.5881 | 126.2854 | 0.4418 |
16 | 0.4774 | 0.5226 | −0.4323 | −0.0149 | 0.5226 | 0.6219 | 43.4144 | 112.2465 | 0.4774 |
17 | 0.5139 | 0.4861 | −0.3266 | −0.0113 | 0.4861 | 0.6985 | 48.7630 | 99.9346 | 0.5139 |
18 | 0.5513 | 0.4487 | −0.2215 | −0.0076 | 0.4487 | 0.7840 | 54.7301 | 89.0389 | 0.5513 |
19 | 0.5895 | 0.4105 | −0.1162 | −0.0040 | 0.4105 | 0.8802 | 61.4414 | 79.3132 | 0.5895 |
20 | 0.6285 | 0.3715 | −0.0097 | −0.0003 | 0.3715 | 0.9894 | 69.0649 | 70.5585 | 0.6285 |
0.6321 | 0.3679 | 0.0000 | 0.0000 | 0.3679 | 1.0000 | 69.8065 | 69.8065 | 0.6321 | |
21 | 0.6685 | 0.3315 | 0.0990 | 0.0034 | 0.3315 | 1.1150 | 77.8327 | 62.6101 | 0.6685 |
22 | 0.7094 | 0.2906 | 0.2116 | 0.0073 | 0.2906 | 1.2617 | 88.0781 | 55.3272 | 0.7094 |
23 | 0.7511 | 0.2489 | 0.3299 | 0.0114 | 0.2489 | 1.4368 | 100.3032 | 48.5838 | 0.7511 |
24 | 0.7938 | 0.2062 | 0.4569 | 0.0158 | 0.2062 | 1.6519 | 115.3161 | 42.2588 | 0.7938 |
25 | 0.8375 | 0.1625 | 0.5972 | 0.0206 | 0.1625 | 1.9273 | 134.5426 | 36.2199 | 0.8375 |
26 | 0.8821 | 0.1179 | 0.7599 | 0.0262 | 0.1179 | 2.3045 | 160.8711 | 30.2920 | 0.8821 |
27 | 0.9277 | 0.0723 | 0.9659 | 0.0333 | 0.0723 | 2.8898 | 201.7269 | 24.1570 | 0.9277 |
28 | 0.9743 | 0.0257 | 1.2979 | 0.0448 | 0.0257 | 4.1616 | 290.5145 | 16.7741 | 0.9743 |
0.9782 | 0.0218 | 1.3414 | 1.4738 | 0.0218 | 4.3657 | 304.7600 | 15.9900 | 0.9782 | |
29 | 0.9900 | 0.0100 | 1.5272 | 0.0527 | 0.0100 | 5.3540 | 373.7498 | 13.0384 | 0.9900 |
β = 0.9102 | ƞ = 69.8065 | µy = −0.6672 | σ1 = 304.7600 | σ2 = 15.9900 |
ni | Yi Equation (21) | µy Equation (14) | R(t) Equation (20) | toi Equation (15) | σ2i Equation (16) | σ1i Equation (17) | F(t) Equation (7) |
---|---|---|---|---|---|---|---|
1 | −3.7256 | −0.1285 | 0.9762 | 0.0071 | 0.4981 | 9783.4030 | 0.0238 |
−2.9702 | −0.1024 | 0.9500 | 0.0194 | 1.3570 | 3591.0886 | 0.0500 | |
2 | −2.8207 | −0.0973 | 0.9422 | 0.0237 | 1.6546 | 2945.1760 | 0.0578 |
3 | −2.3400 | −0.0807 | 0.9082 | 0.0449 | 3.1311 | 1556.3556 | 0.0918 |
4 | −2.0062 | −0.0692 | 0.8741 | 0.0698 | 4.8755 | 999.5045 | 0.1259 |
5 | −1.7476 | −0.0603 | 0.8401 | 0.0984 | 6.8706 | 709.2668 | 0.1599 |
6 | −1.5347 | −0.0529 | 0.8061 | 0.1305 | 9.1130 | 534.7438 | 0.1939 |
−1.3704 | −1.8180 | 0.7757 | 0.1623 | 11.3328 | 430.0000 | 0.2243 | |
7 | −1.3524 | −0.0466 | 0.7721 | 0.1663 | 11.6070 | 419.8408 | 0.2279 |
8 | −1.1918 | −0.0411 | 0.7381 | 0.2058 | 14.3630 | 339.2823 | 0.2619 |
−1.1109 | −1.4738 | 0.7194 | 0.2291 | 15.9900 | 304.7500 | 0.2806 | |
9 | −1.0474 | −0.0361 | 0.7041 | 0.2492 | 17.3959 | 280.1293 | 0.2959 |
10 | −0.9154 | −0.0316 | 0.6701 | 0.2969 | 20.7257 | 235.1238 | 0.3299 |
11 | −0.7930 | −0.0273 | 0.6361 | 0.3492 | 24.3773 | 199.9034 | 0.3639 |
12 | −0.6784 | −0.0234 | 0.6020 | 0.4066 | 28.3815 | 171.7005 | 0.3980 |
13 | −0.5699 | −0.0197 | 0.5680 | 0.4695 | 32.7756 | 148.6811 | 0.4320 |
14 | −0.4663 | −0.0161 | 0.5340 | 0.5387 | 37.6055 | 129.5852 | 0.4660 |
15 | −0.3665 | −0.0126 | 0.5000 | 0.6149 | 42.9271 | 113.5207 | 0.5000 |
16 | −0.2697 | −0.0093 | 0.4660 | 0.6992 | 48.8095 | 99.8395 | 0.5340 |
17 | −0.1751 | −0.0060 | 0.4320 | 0.7927 | 55.3389 | 88.0595 | 0.5680 |
18 | −0.0819 | −0.0028 | 0.3980 | 0.8971 | 62.6241 | 77.8153 | 0.6020 |
0.0000 | 0.0000 | 0.3679 | 1.0000 | 69.8065 | 69.8065 | 0.6321 | |
19 | 0.0107 | 0.0004 | 0.3639 | 1.0143 | 70.8051 | 68.8243 | 0.6361 |
20 | 0.1033 | 0.0036 | 0.3299 | 1.1469 | 80.0653 | 60.8642 | 0.6701 |
21 | 0.1969 | 0.0068 | 0.2959 | 1.2986 | 90.6512 | 53.7567 | 0.7041 |
22 | 0.2925 | 0.0101 | 0.2619 | 1.4741 | 102.9040 | 47.3559 | 0.7381 |
23 | 0.3913 | 0.0135 | 0.2279 | 1.6805 | 117.3143 | 41.5390 | 0.7721 |
24 | 0.4950 | 0.0171 | 0.1939 | 1.9285 | 134.6219 | 36.1985 | 0.8061 |
25 | 0.6062 | 0.0209 | 0.1599 | 2.2349 | 156.0158 | 31.2347 | 0.8401 |
26 | 0.7288 | 0.0251 | 0.1259 | 2.6298 | 183.5827 | 26.5445 | 0.8741 |
27 | 0.8703 | 0.0300 | 0.0918 | 3.1730 | 221.4969 | 22.0008 | 0.9082 |
28 | 1.0474 | 0.0361 | 0.0578 | 4.0133 | 280.1599 | 17.3940 | 0.9422 |
1.1109 | 1.4738 | 0.0480 | 4.3656 | 304.7500 | 15.9900 | 0.9520 | |
29 | 1.3185 | 0.0455 | 0.0238 | 5.7498 | 401.3795 | 12.1409 | 0.9762 |
Feature | Proposed Method | Median Rank Method |
---|---|---|
Weibull Shape Parameter Equation (9) | β = 0.9102 | β = 0.7538 |
Weibull Scale Parameter Equation (10) | ƞ = 69.8077 | ƞ = 69.8077 |
Principal Stresses, Equations (17) and (16) σ1 = 304.7600 MPa σ2 = 15.9900 MPa Material strength, Sy = 430 MPa | R(t) = 0.8260 | R(t) = 0.7757 |
R(t) = 0.95 Equation (8) | σ1 = 1824.3190 MPa σ2 = 2.6712 MPa | σ1 = 3591.0886 MPa σ2 = 1.3570 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barraza-Contreras, J.M.; Piña-Monarrez, M.R.; Torres-Villaseñor, R.C. Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage. Appl. Sci. 2023, 13, 10291. https://doi.org/10.3390/app131810291
Barraza-Contreras JM, Piña-Monarrez MR, Torres-Villaseñor RC. Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage. Applied Sciences. 2023; 13(18):10291. https://doi.org/10.3390/app131810291
Chicago/Turabian StyleBarraza-Contreras, Jesús M., Manuel R. Piña-Monarrez, and Roberto C. Torres-Villaseñor. 2023. "Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage" Applied Sciences 13, no. 18: 10291. https://doi.org/10.3390/app131810291
APA StyleBarraza-Contreras, J. M., Piña-Monarrez, M. R., & Torres-Villaseñor, R. C. (2023). Reliability by Using Weibull Distribution Based on Vibration Fatigue Damage. Applied Sciences, 13(18), 10291. https://doi.org/10.3390/app131810291