Study on the Properties and Mechanism of Recycled Aggregate/Asphalt Interface Modified by Silane Coupling Agent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Main Materials
2.2. Treatment Methods and Reaction Mechanisms
2.3. Experimental Testing Methods
2.3.1. Boiling Water Test
2.3.2. Direct Tensile Test
2.3.3. SEM
3. Simulation Methods
3.1. Computational Models
3.1.1. Asphalt Model
3.1.2. SCA/C-S-H Model
3.1.3. C-S-H/Asphalt Interface Models
3.2. Simulation Calculations
3.2.1. Hydrogen Bond
3.2.2. Interaction Energy
3.2.3. Relative Concentration
4. Results and Discussions
4.1. Boiling Water Test
4.2. Direct Tensile Strength Test
4.3. Microstructure Analysis
4.4. Hydrogen Bonding Analysis
4.5. Interaction Energy Analysis
4.6. Interface Transition Zone Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xiao, J.; Shen, J.; Gao, Q.; Wu, Y. Reuse of construction spoil in China: Current status and future opportunities. J. Clean. Prod. 2020, 290, 125742. [Google Scholar] [CrossRef]
- Piccinali, A.; Diotti, A.; Plizzari, G.; Plizzari, G. Impact of recycled aggregate on the mechanical and environmental properties of concrete: A review. Materials 2022, 15, 1818. [Google Scholar] [CrossRef]
- Ulucan, M.; Alyamac, K.E. A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste. Manag. 2022, 146, 53–65. [Google Scholar] [CrossRef]
- Chen, X.; Yang, Y.; Zhang, C.; Hu, R.; Zhang, H.Y.; Li, B.X.; Zhao, Q.L. Valorization of construction waste materials for pavements of sponge cities: A review. Constr. Build. Mater. 2022, 356, 129247. [Google Scholar] [CrossRef]
- Pal, S.; Mandal, I. Impacts of stone mining and crushing on environmental health in Dwarka river basin. Geocarto Int. 2021, 36, 392–420. [Google Scholar] [CrossRef]
- Hua, C.X.; Liu, C.Y.; Chen, J.G.; Yang, C.X.; Chen, L.Y. Promoting construction and demolition waste recycling by using incentive policies in China. Environ. Sci. Pollut. R. 2022, 29, 53844–53859. [Google Scholar] [CrossRef]
- Molla, A.S.; Tang, P.T.; Sher, W.; Bekele, D.N. Chemicals of concern in construction and demolition waste fine residues: A systematic literature review. J. Environ. Manag. 2021, 299, 113654. [Google Scholar] [CrossRef]
- Liu, H.B.; Liu, H.B.; Quan, H.Z.; Xu, X.L.; Wang, Q.Y.; Ni, S.Y. Assessment on the Properties of Biomass-Aggregate Geopolymer Concrete. Appl. Sci. 2022, 12, 3561. [Google Scholar] [CrossRef]
- Mistri, A.; Dhami, N.; Bhattacharyya, S.K.; Barai, S.V.; Mukherjee, A.; Biswas, W.K. Environmental implications of the use of bio-cement treated recycled aggregate in concrete. Resour. Conserv. Recycl. 2021, 167, 105436. [Google Scholar] [CrossRef]
- Ni, S.Y.; Liu, H.B.; Li, Q.Y.; Quan, H.Z.; Gheibi, M.; Fathollahi-Fard, A.M.; Tian, G.D. Assessment of the engineering properties, carbon dioxide emission and economic of biomass recycled aggregate concrete: A novel approach for building green concretes. J. Clean. Prod. 2022, 365, 132780. [Google Scholar] [CrossRef]
- Wang, R.J.; Yu, N.N.; Li, Y. Methods for improving the microstructure of recycled concrete aggregate: A review. Constr. Build. Mater. 2020, 242, 118164. [Google Scholar] [CrossRef]
- Martinez-Lage, I.; Vazquez-Burgo, P.; Vazquez-Burgo, P. Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste. Manag. 2020, 101, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, F.; Petrillo, A.; Farina, I. Comparative environmental evaluation of recycled aggregates from construction and demolition wastes in Italy. Sci. Total Environ. 2021, 798, 149250. [Google Scholar] [CrossRef] [PubMed]
- Mostert, C.; Sameer, H.; Glanz, D.; Bringezu, S. Climate and resource footprint assessment and visualization of recycled concrete for circular economy. Resour. Conserv. Recycl. 2021, 174, 105767. [Google Scholar] [CrossRef]
- Gedik, A. A review on the evaluation of the potential utilization of construction and demolition waste in hot mix asphalt pavements. Resour. Conserv. Recycl. 2020, 161, 104956. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.W.; Xiao, J.Z.; Bai, G.L. Effect of old mortar pore structure on relative humidity response of recycled aggregate concrete. Constr. Build. Mater. 2020, 247, 118600. [Google Scholar] [CrossRef]
- Jang, H.; Kim, J.; Kim, J. Effect of aggregate size on recycled aggregate concrete under equivalent mortar volume mix design. Appl. Sci. 2021, 11, 11274. [Google Scholar] [CrossRef]
- Huang, Q.B.; Qian, Z.D.; Hu, J.; Zheng, D.; Chen, L.L.; Zhang, M.; Yu, J.Z. Investigation on the properties of aggregate-mastic interfacial transition zones (ITZs) in asphalt mixture containing recycled concrete aggregate. Constr. Build. Mater. 2021, 269, 121257. [Google Scholar] [CrossRef]
- Ji, J.; Li, P.F.; Chen, M.; Zhang, R.; Zhou, W.J.; You, Z.P. Review on the fatigue properties of recycled asphalt concrete containing construction and demolition wastes. J. Clean. Prod. 2021, 327, 129478. [Google Scholar] [CrossRef]
- Liu, S.J.; Cui, S.P.; Guo, H.X.; Wang, Y.L.; Zheng, Y. Adsorption of lead ion from wastewater using non-crystal hydrated calcium silicate gel. Materials 2021, 14, 842. [Google Scholar] [CrossRef]
- Prasad, D.; Singh, B.; Suman, S.K. Utilization of recycled concrete aggregate in bituminous mixtures: A comprehensive review. Constr. Build. Mater. 2022, 326, 126859. [Google Scholar] [CrossRef]
- Foti, D.; Cavallo, D. Mechanical behavior of concretes made with non-conventional organic origin calcareous aggregates. Constr. Build. Mater. 2018, 179, 100–106. [Google Scholar] [CrossRef]
- Spairani, Y.; Cisternino, A.; Foti, D.; Lerna, M.; Ivorra, S. Study of the behavior of structural materials treated with bioconsolidant. Materials 2021, 14, 5369. [Google Scholar] [CrossRef] [PubMed]
- Lerna, M.; Foti, D.; Petrella, A.; Sabbà, M.F.; Mansour, S. Effect of the chemical and mechanical recycling of PET on the thermal and mechanical response of mortars and premixed screeds. Materials 2023, 16, 3155. [Google Scholar] [CrossRef] [PubMed]
- Lerna, M.; Caballero-Jorna, M.; Roig-Flores, M.; Foti, D.; Serna, P. Influence of recycled materials on the mechanical properties of macro synthetic fiber-reinforced concrete. In Proceedings of the FIB International Congress, Oslo, Norway, 12–16 June 2022. [Google Scholar]
- Gunka, V.; Demchuk, Y.; Sidun, I.; Miroshnichenko, D.; Nyakuma, B.B.; Pyshyev, S. Application of phenol-cresol-formaldehyde resin as an adhesion promoter for bitumen and asphalt concrete. Road Mater. Pavement Des. 2021, 22, 2906–2918. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.S.; Wu, Q.S.; Zhu, H.J.; Liu, Y. Thermal properties of metakaolin-based geopolymer modified by the silane coupling agent. Mater. Chem. Phys. 2021, 267, 124655. [Google Scholar] [CrossRef]
- Liu, J.M.; Ju, B.Y.; Yin, Q.; Xie, W.; Xiao, H.Y.; Dong, S.L. Properties of Concrete Prepared with silane coupling agent impregnated coral aggregate and coral concrete. Materials 2021, 14, 6454. [Google Scholar] [CrossRef]
- Luo, X.Y.; Wei, Y.H.; Ma, L.L.; Tian, W.; Zhu, C.Y. Effect of corrosive aging environments on the flexural properties of silane-coupling-agent-modified basalt-fiber-reinforced composites. Materials 2023, 16, 1543. [Google Scholar] [CrossRef]
- Aziz, T.; Ullah, A.; Fan, H.; Jamil, M.I.; Khan, F.U.; Ullah, R.; Iqbal, M.; Ali, A.; Ullah, B. Recent Progress in Silane Coupling Agent with Its Emerging Applications. J. Polym. Environ. 2021, 29, 3427–3443. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, W.J.; Wang, S.Q.; Niu, Z.J.; Li, L.Y. Multi-scale analysis of mechanical properties of KH-560 coupling agent modified PVA fiber-rubber concrete. Compos. Interface 2023, 30, 983–1010. [Google Scholar] [CrossRef]
- Li, Y.L.; Li, Y.Z.; Li, Y.; Liu, Z.Z.; Wen, L.F.; Zhang, Y.Z.; Zhou, H. Effect of silane coupling agent on improving adhesive property between acidic aggregate and hydraulic asphalt. J. Mater. Civil Eng. 2021, 33, 04021172. [Google Scholar] [CrossRef]
- Ye, Y.L.; Hao, Y.; Zhuang, C.Y.; Shu, S.Q.; Lv, F.L. Evaluation on improvement effect of different anti-stripping agents on pavement performance of granite-asphalt mixture. Materials 2022, 15, 915. [Google Scholar] [CrossRef] [PubMed]
- Ran, W.P.; Zhu, H.L.; Shen, X.Z.; Zhang, Y. Rheological properties of asphalt mortar with silane coupling agent modified oil sludge pyrolysis residue. Constr. Build. Mater. 2022, 329, 127057. [Google Scholar] [CrossRef]
- Guo, F.C.; Pei, J.Z.; Zhang, J.P.; Xue, B.; Sun, G.Q. Study on the adhesion property between asphalt binder and aggregate: A state-of-the-art review. Constr. Build. Mater. 2020, 256, 119474. [Google Scholar] [CrossRef]
- Hou, D.S.; Yang, Q.R.; Jin, Z.Q.; Wang, P.; Wang, M.H.; Wang, X.P.; Zhang, Y. Enhancing interfacial bonding between epoxy and CSH using graphene oxide: An atomistic investigation. Appl. Surf. Sci. 2021, 568, 150896. [Google Scholar] [CrossRef]
- Yu, C.H.; Hu, K.; Yang, Q.L.; Chen, Y.J. Multi-scale observation of oxidative aging on the enhancement of high-temperature property of SBS-modified asphalt. Constr. Build. Mater. 2021, 313, 125478. [Google Scholar] [CrossRef]
- Sun, W.; Wang, H. Moisture effect on nanostructure and adhesion energy of asphalt on aggregate surface: A molecular dynamics study. Appl. Surf. Sci. 2020, 510, 145435. [Google Scholar] [CrossRef]
- Luo, L.; Chu, L.J.; Fwa, T.F. Molecular dynamics analysis of moisture effect on asphalt-aggregate adhesion considering anisotropic mineral surfaces. Appl. Surf. Sci. 2020, 527, 146830. [Google Scholar] [CrossRef]
- Zhai, M.; Li, J.L.; Wang, R.R.; Yue, J.C.; Wang, X.F. Revealing mechanisms of aging and moisture on thermodynamic properties and failure patterns of asphalt-aggregate interface from the molecular Scale. J. Mater. Civil Eng. 2023, 35, 04022486. [Google Scholar] [CrossRef]
- ASTM D1078-11; Standard Test Method for Distillation Range of Volatile Organic Liquids. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D4052; Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D542-14; Standard Test Method for Index of Refraction of Transparent Organic Plastics. ASTM International: West Conshohocken, PA, USA, 2014.
- ASTM D5-06; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D36-06; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM D113-07; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2018.
- Liu, T.J.; Wei, H.N.; Zhou, A.; Zou, D.J.; Jian, H.S. Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers. Cem. Concr. Compos. 2020, 111, 103638. [Google Scholar] [CrossRef]
- ASTM D36-25; Standard Practice for Effect of Water on Bituminous-Coated Aggregate Using Boiling Water. ASTM International: West Conshohocken, PA, USA, 2012.
- ASTM D4124-09; Standard Test Method for Separation of Asphalt into Four Fractions. ASTM International: West Conshohocken, PA, USA, 2018.
- Hu, K.; Yu, C.H.; Chen, Y.J.; Li, W.; Wang, D.D.; Zhang, W.G. Multiscale mechanisms of asphalt performance enhancement by crumbed waste tire rubber: Insight from molecular dynamics simulation. J. Mol. Model. 2021, 27, 170–184. [Google Scholar] [CrossRef] [PubMed]
- Hu, K.; Yu, C.H.; Yang, Q.L.; Li, Z.W.; Zhang, W.G.; Zhang, T.L.; Feng, Y. Mechanistic study of graphene reinforcement of rheological performance of recycled polyethylene modified asphalt: A new observation from molecular dynamics simulation. Constr. Build. Mater. 2022, 320, 126263. [Google Scholar] [CrossRef]
- Yu, C.H.; Yang, Q.L. Investigation of the interfacial interaction of carbon nanomaterials with asphalt matrix: Insights from molecular simulations. Mol. Simul. 2023, 49, 208–222. [Google Scholar] [CrossRef]
- Qin, D.J.; Feng, Y.; Li, L.J. Molecular dynamics study on improvement effect of polyethylene terephthalate on adhesive properties of asphalt and cement-based composite interface. Mol. Simul. 2023, 49, 1293–1302. [Google Scholar] [CrossRef]
- Jiang, F.X.; Yang, Q.R.; Wang, Y.T.; Wang, P.; Hou, D.S.; Jin, Z.Q. Insights on the adhesive properties and debonding mechanism of CFRP/concrete interface under sulfate environment: From experiments to molecular dynamics. Constr. Build. Mater. 2021, 269, 121247. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Zhao, C.; Qin, D.J.; Wang, C.; Wang, P.Y. Nano-CaCO3 enhances PVA fiber-matrix interfacial properties: An experimental and molecular dynamics study. Mol. Simul. 2022, 48, 1378–1392. [Google Scholar] [CrossRef]
- Hou, D.S.; Yang, Q.R.; Wang, P.; Jin, Z.Q.; Wang, M.H.; Zhang, Y.; Wang, X.P. Unraveling disadhesion mechanism of epoxy/CSH interface under aggressive conditions. Cem. Concr. Compos. 2021, 146, 106489. [Google Scholar] [CrossRef]
- Luo, Q.; Li, Y.Y.; Zhang, Z.; Peng, X.J.; Geng, G.Q. Influence of substrate moisture on the interfacial bonding between calcium silicate hydrate and epoxy. Constr. Build. Mater. 2022, 320, 126252. [Google Scholar] [CrossRef]
- Luo, Q.; Zhang, X.Y.; Li, Y.Y.; Zhang, Z.; Geng, G.Q. Interfacial degradation of calcium silicate hydrate and epoxy under a hygrothermal environment: An experimental and molecular model study. J. Phys. Chem. C 2023, 127, 1607–1621. [Google Scholar] [CrossRef]
- Cui, W.T.; Huang, W.K.; Hu, B.; Xie, J.W.; Xiao, Z.C.; Cai, X.; Wu, K.H. Investigation of the Effects of Adsorbed Water on Adhesion Energy and Nanostructure of Asphalt and Aggregate Surfaces Based on Molecular Dynamics Simulation. Polymers 2020, 12, 2339. [Google Scholar] [CrossRef]
- Cui, B.Y.; Wang, H. Molecular interaction of Asphalt-Aggregate interface modified by silane coupling agents at dry and wet conditions. Appl. Surf. Sci. 2022, 275, 151365. [Google Scholar] [CrossRef]
Physical Parameters | Units | Value | Test Standard |
---|---|---|---|
Boiling point | °C | 73.6 | ASTM D1078-11 [41] |
Density | g/cm3 | 48.0 | ASTM D4052 [42] |
Refractive index ND25 | — | 102.2 | ASTM D542-14 [43] |
Physical Parameters | Units | Value | Test Standard |
---|---|---|---|
Penetration (25 °C, 100 g, 5 s) | 0.1 mm | 73.6 | ASTM D5-06 [44] |
Softening point | °C | 48.0 | ASTM D36-06 [45] |
Ductility (15 °C, 5 cm/min) | cm | 102.2 | ASTM D113-07 [46] |
Prefix | Full Name |
---|---|
RCA | Recycled concrete aggregate |
RCA1 | Discarded cement column (30 × 30 × 30 mm) |
RCA2 | Recycled concrete aggregate (13.2–19 mm) |
C-S-H | Calcium silicate hydrate |
SCA | Silane coupling agent |
SEM | Scanning electron microscopy |
SARA | Saturates, aromatics, resins, and asphaltenes |
The Degree of Asphalt Film Spalling on the Surface of RCA after Boiling Water Test | Adhesion Grade |
---|---|
The asphalt film is not damaged and there is no peeling. | 5 |
The thickness of the RCA surface asphalt film is uneven, with a peeling area percentage of less than 10%. | 4 |
The asphalt film is generally retained on the surface of the RCA, with a peeling area percentage of less than 10%. | 3 |
The asphalt film is partially retained on the surface of the RCA, with a peeling area percentage greater than 30%. | 2 |
The surface asphalt film of the RCA has mostly peeled off, allowing the asphalt to float on the water’s surface. | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Hu, K.; Gao, J.; Chen, Y.; Yang, Q.; Du, X. Study on the Properties and Mechanism of Recycled Aggregate/Asphalt Interface Modified by Silane Coupling Agent. Appl. Sci. 2023, 13, 10343. https://doi.org/10.3390/app131810343
Zhou J, Hu K, Gao J, Chen Y, Yang Q, Du X. Study on the Properties and Mechanism of Recycled Aggregate/Asphalt Interface Modified by Silane Coupling Agent. Applied Sciences. 2023; 13(18):10343. https://doi.org/10.3390/app131810343
Chicago/Turabian StyleZhou, Jiawang, Kui Hu, Junfeng Gao, Yujing Chen, Qilin Yang, and Xiaotong Du. 2023. "Study on the Properties and Mechanism of Recycled Aggregate/Asphalt Interface Modified by Silane Coupling Agent" Applied Sciences 13, no. 18: 10343. https://doi.org/10.3390/app131810343
APA StyleZhou, J., Hu, K., Gao, J., Chen, Y., Yang, Q., & Du, X. (2023). Study on the Properties and Mechanism of Recycled Aggregate/Asphalt Interface Modified by Silane Coupling Agent. Applied Sciences, 13(18), 10343. https://doi.org/10.3390/app131810343