Variability and the Correlation of Kinematic and Temporal Parameters in Different Modalities of the Reverse Punch Measured by Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
- (i)
- RPNH: static punch execution with feet firmly on the ground and no hip rotation included. The zenkutsu-dachi was the initial stance and required positioning both hips at 90 degrees relative to the stance direction (i.e., front position of hips).
- (ii)
- RPH: static punch execution with feet firmly on the ground, but hip rotation included. The fudo-dachi was the initial stance and required hip positioning at an angle relative to the stance direction (i.e., open position of hips).
- (iii)
- RPSM: punch execution in motion including hip rotation. Stance and hip position were the same as in the second test. The motion adopted was the common pattern motion combined with the reverse punch. Thereby, the sequence of the test was: static starting position—sliding movement (dynamic preparation stage)—execution (dynamic execution stage) that starts by attaining stability in combat stance again, for a very brief, transitional moment.
2.3. Measurement and Data Processing
2.4. Variables
- tHAS—time for the onset of hand acceleration;
- tHA—time for the maximum hand acceleration;
- tHV—time for the maximum hand velocity;
- tBAS—time for the onset of body acceleration;
- tBA—time for the onset of body acceleration;
- tBV—time for the maximum body velocity;
- tBRa—time for maximal body rotation angle.
- HA—maximum hand acceleration, expressed in g0;
- HV—maximum hand velocity, expressed in m/s;
- BA—maximum body acceleration, expressed in g0;
- BV—maximum body velocity, expressed in m/s.
- BRa—maximal body rotation angle, expressed in deg.
2.5. Statistical Analysis
3. Results
4. Discussion
- (i)
- There are significant differences in the temporal and kinematic variables of RP that arise from the modality of execution.
- (ii)
- Unlike kinematics, the temporal parameters show a tendency towards consistency in the more demanding modalities, which are RPH and RPSM.
- (iii)
- Medium and large correlations were found between the investigated temporal and kinematic variables of the body and hand.
4.1. Differences in the Temporal and Kinematics Variables
4.2. The Temporal Variables’ Consistency in Demanding Modalities
4.3. Correlations between the Temporal and Kinematic Variables
4.4. Contribution of the Study
4.5. Limitations of the Study and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Loturco, I.; Artioli, G.G.; Kobal, R.; Gil, S.; Franchini, E. Predicting Punching Acceleration from Selected Strength and Power Variables in Elite Karate Athletes: A Multiple Regression Analysis. J. Strength Cond. Res. 2014, 28, 1826–1832. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie-Gyan, T.; Yu, H.; Bogale, M.; Hernandez, N.V.; Pirela-Cruz, M. Application of Multiple Sensor Data Fusion for the Analysis of Human Dynamic Behavior in Space: Assessment and Evaluation of Mobility-Related Functional Impairments. J. Biomed. Sci. Eng. 2017, 10, 182–203. [Google Scholar] [CrossRef]
- Lapinski, M.; Medeiros, C.B.; Scarborough, D.M.; Berkson, E.; Gill, T.J.; Kepple, T.; Paradiso, J.A. A Wide-Range, Wireless Wearable Inertial Motion Sensing System for Capturing Fast Athletic Biomechanics in Overhead Pitching. Sensors 2019, 19, 3637. [Google Scholar] [CrossRef]
- Picerno, P. 25 Years of Lower Limb Joint Kinematics by Using Inertial and Magnetic Sensors: A Review of Methodological Approaches. Gait Posture 2017, 51, 239–246. [Google Scholar] [CrossRef] [PubMed]
- De Fazio, R.; Mastronardi, V.M.; De Vittorio, M.; Visconti, P. Wearable Sensors and Smart Devices to Monitor Rehabilitation Parameters and Sports Performance: An Overview. Sensors 2023, 23, 1856. [Google Scholar] [CrossRef] [PubMed]
- Taborri, J.; Keogh, J.; Kos, A.; Santuz, A.; Umek, A.; Urbanczyk, C.; van der Kruk, E.; Rossi, S. Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview. Appl. Bionics Biomech. 2020, 2020, 2041549. [Google Scholar] [CrossRef] [PubMed]
- Camomilla, V.; Bergamini, E.; Fantozzi, S.; Vannozzi, G. Trends Supporting the In-field Use of Wearable Inertial Sensors for Sport Performance Evaluation: A Systematic Review. Sensors 2018, 18, 873. [Google Scholar] [CrossRef] [PubMed]
- Vuković, V.; Dopsaj, M.; Koropanovski, N.; Marković, S.; Kos, A.; Umek, A. Metrical Characteristics and the Reliability of Kinematic Sensor Devices Applied in Different Modalities of Reverse Punch in Karate Athletes. Measurement 2021, 177, 109315. [Google Scholar] [CrossRef]
- Marković, S.; Kos, A.; Vuković, V.; Dopsaj, M.; Koropanovski, N.; Umek, A. Use of IMU in Differential Analysis of the Reverse Punch Temporal Structure in Relation to the Achieved Maximal Hand Velocity. Sensors 2021, 21, 4148. [Google Scholar] [CrossRef]
- Ortega, A.B.; García, C.C.; Godoy, J.I.; Wasik, D.S.S.; Rayón, E.M.; Rivera, H.R.A.; Gómez Becerra, F.A. Biomechanics of the Upper Limbs: A Review in the Sports Combat Ambit Highlighting Wearable Sensors. Sensors 2022, 22, 4905. [Google Scholar] [CrossRef]
- Turner, A.; Baker, E.; Miller, S. Increasing the Impact Force of the Rear Hand Punch. Strength Cond. J. 2011, 33, 2–9. [Google Scholar] [CrossRef]
- Koropanovski, N.; Berjan, B.; Bozic, P.R.; Pazin, N.; Sanader, A.; Jovanovic, S.; Jaric, S. Anthropometric and Physical Performance Profiles of Elite Karate Kumite and Kata Competitors. J. Hum. Kinet. 2011, 30, 107–114. [Google Scholar] [CrossRef]
- Beneke, R.; Beyer, T.; Jachner, C.; Erasmus, J.; Hütler, M. Energetics of Karate Kumite. Eur. J. Appl. Physiol. 2004, 92, 518–523. Available online: https://link.springer.com/article/10.1007/s00421-004-1073-x (accessed on 15 July 2022). [CrossRef] [PubMed]
- Iide, K.; Imamura, H.; Yoshimura, Y.; Yamashita, A.; Miyahara, K.; Miyamoto, N.; Moriwaki, C. Physiological Responses of Simulated Karate Sparring Matches in Young Men and Boys. J. Strength Cond. Res. 2008, 22, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Chaabène, H.; Mkaouer, B.; Franchini, E.; Souissi, N.; Selmi, M.A.; Nagra, Y.; Chamari, K. Physiological Responses and Performance Analysis Difference between Official and Simulated Karate Combat Conditions. Asian J. Sports Med. 2014, 5, 21–29. [Google Scholar] [CrossRef] [PubMed]
- World Karate Federation. Available online: https://www.wkf.net/pdf/WKF_Competition%20Rules_2020_EN.pdf (accessed on 12 December 2022).
- Franchini, E. Energy System Contributions during Olympic Combat Sports: A Narrative Review. Metabolites 2023, 13, 297. [Google Scholar] [CrossRef]
- Koropanovski, N.; Dopsaj, M.; Jovanovic, S. Characteristics of Pointing Actions of Top Male Competitors in Karate at World and European Level. Braz. J. Biomot. 2008, 2, 241–251. [Google Scholar]
- Lenetsky, S.; Harris, N.; Brughelli, M. Assessment and Contributors of Punching Forces in Combat Sports Athletes: Implications for Strength and Conditioning. Strength Cond. J. 2013, 35, 1–7. [Google Scholar] [CrossRef]
- Cesari, P.; Bertucco, M. Coupling between Punch Efficacy and Body Stability for Elite Karate. J. Sci. Med. Sport 2008, 11, 353–356. [Google Scholar] [CrossRef]
- Labintsev, A.; Khasanshin, I.; Balashov, D.; Bocharov, M.; Bublikov, K. Recognition Punches in Karate Using Acceleration Sensors and Convolution Neural Networks. IEEE Access 2021, 9, 138106–138119. [Google Scholar] [CrossRef]
- VencesBrito, A.M.; Ferreira, M.A.R.; Cortes, N.; Fernandes, O.; Pezarat-Correia, P. Kinematic and Electromyographic Analyses of a Karate Punch. J. Electromyogr. Kinesiol. 2011, 21, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Goethel, M.F.; Ervilha, U.F.; Moreira, P.V.S.; de Paula Silva, V.; Bendillati, A.R.; Cardozo, A.C.; Gonçalves, M. Coordinative Intra-Segment Indicators of Karate Performance. Arch. Budo 2019, 15, 203–211. [Google Scholar]
- Goethel, M.F.; Vilas-Boas, J.P.; Machado, L.; Ervilha, U.F.; Moreira, P.V.S.; Bendilatti, A.R.; Hamill, J.; Cardozo, A.C.; Gonçalves, M. Performance, Perceptual and Reaction Skills and Neuromuscular Control Indicators of High-Level Karate Athletes in the Execution of the Gyaku Tsuki Punch. Biomechanics 2023, 3, 415–424. [Google Scholar] [CrossRef]
- Saponara, S. Wearable Biometric Performance Measurement System for Combat Sports. IEEE Trans. Instrum. Meas. 2017, 66, 2545–2555. [Google Scholar] [CrossRef]
- Vuković, V.; Koropanovski, N.; Marković, S.; Kos, A.; Dopsaj, M.; Umek, A. Specific Test Design for the In-Depth Technique Analysis of Elite Karate Competitors with the Application of Kinematic Sensors. Appl. Sci. 2022, 12, 8048. [Google Scholar] [CrossRef]
- Molinaro, L.; Taborri, J.; Montecchiani, M.; Rossi, S. Assessing the Effects of Kata and Kumite Techniques on Physical Performance in Elite Karatekas. Sensors 2020, 20, 3186. [Google Scholar] [CrossRef]
- Bolander, R.P.; Neto, O.P.; Bir, C.A. The Effects of Height and Distance on the Force Production and Acceleration in Martial Arts Strikes. J. Sports Sci. Med. 2009, 8, 47–52. [Google Scholar]
- Echeverria, J.; Santos, O.C. Toward Modelling Psychomotor Performance in Karate Combats Using Computer Vision Pose Estimation. Sensors 2021, 21, 8378. [Google Scholar] [CrossRef]
- Ishac, K.; Eager, D. Evaluating Martial Arts Punching Kinematics Using a Vision and Inertial Sensing System. Sensors 2021, 21, 1948. [Google Scholar] [CrossRef]
- Venkatraman, J.; Manwar, R.; Avanaki, K. Development of a Punch-O-Meter for Sport Karate Training. Electronics 2019, 8, 782. [Google Scholar] [CrossRef]
- Dworak, L.B.; Oziewiecki, K.; Mclczynski, J. Characteristics of Kinematics and Kinetics of Strokes in Karate-biomechanical Approach. ISBS—Conf. Proc. Arch. 2005, 109–112. Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/848 (accessed on 20 July 2022).
- Jemili, H.; Mejri, M.A.; Sioud, R.; Bouhlel, E.; Amri, M. Changes in Muscle Activity During Karate Guiaku-zuki-punch and Kiza-mawashi-guiri-kick After Specific Training in Elite Athletes. Sci. Sports 2017, 32, 73–81. [Google Scholar] [CrossRef]
- Girodet, P.; Vaslin, P.; Dabonneville, M.; Lacouture, P. Two-dimensional Kinematic and Dynamic Analysis of a Karate Straight Punch. Comput. Methods Biomech. Biomed. Eng. 2005, 8, 117–118. [Google Scholar] [CrossRef]
- Gulledge, K.J.; Dapena, J. A Comparison of the Reverse and Power Punches in Oriental Martial Arts. J. Sports Sci. 2008, 26, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Nasr, Y.; Atef, G.; Bini, F.; Varrecchia, T.; Conte, C.; Chini, G.; Ranavolo, A.; Draicchio, F.; Pierelli, F.; et al. Biomechanical Characterization of the Junzuki Karate Punch: Indexes of Performance. Eur. J. Sport Sci. 2018, 18, 796–805. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Lindinger, S.J.; Schwameder, H. Kinematic Analysis of Proximal-to-distal and Simultaneous Motion Sequencing of Straight Punches. Sport Biomech. 2018, 17, 512–530. [Google Scholar] [CrossRef]
- Szczęsna, A.; Błaszczyszyn, M.; Pawlyta, M. Optical Motion Capture Dataset of Selected Techniques in Beginner and Advanced Kyokushin Karate Athletes. Sci. Data 2021, 8, 13. [Google Scholar] [CrossRef]
- Wąsik, J.; Góra, T.; Ortenburger, D.; Shan, G. Kinematic Quantification of Straight-punch Techniques Using the Preferred and Non-Preferred Fist in Taekwon-Do. Biomed. Hum. Kinet. 2019, 11, 115–120. [Google Scholar] [CrossRef]
- Wan Idris, W.M.R.; Rafi, A.; Bidin, A.; Jamal, A.A.; Fadzli, S.A. A Systematic Survey of Martial Art Using Motion Capture Technologies: The Importance of Extrinsic Feedback. Multimed. Tools Appl. 2019, 78, 10113–10140. [Google Scholar] [CrossRef]
- Ball, N.; Scurr, J. Electromyography Normalization Methods for High-velocity Muscle Actions: Review and Recommendations. J. Appl. Biomech. 2013, 29, 600–608. [Google Scholar] [CrossRef]
- Suwarganda, E.K.; Razali, R.A.; Wilson, B.; Flyger, N.; Ponniyah, A. Analysis of Performance of the Karate Punch (Gyaku-Zuki). In Proceedings of the 27th International Conference on Biomechanics in Sports, Limerick, Ireland, 17–21 August 2009; pp. 1–4. Available online: https://ojs.ub.uni-konstanz.de/cpa/article/view/3410 (accessed on 20 July 2022).
- Rana, M.; Mittal, V. Wearable Sensors for Real-Time Kinematics Analysis in Sports: A Review. IEEE Sens. J. 2020, 21, 1187–1207. [Google Scholar] [CrossRef]
- Lee, J.; Wheeler, K.; James, D.A. Wearable Sensors in Sport: A Practical Guide to Usage and Implementation; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2019; ISBN 9789811337765. [Google Scholar]
- Nakayama, M. Dynamic Karate; Kodansha International Limited: Tokyo, Japan, 1986. [Google Scholar]
- Liu, L.; Zhang, X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. Micromachines 2022, 13, 1356. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Chopada, P.; Kehtarnavaz, N. C-MHAD: Continuous Multimodal Human Action Dataset of Simultaneous Video and Inertial Sensing. Sensors 2020, 20, 2905. [Google Scholar] [CrossRef]
- Chao, X.; Hou, Z.; Mo, Y. CZU-MHAD: A Multimodal Dataset for Human Action Recognition Utilizing a Depth Camera and 10 Wearable Inertial Sensors. IEEE Sens. J. 2022, 22, 7034–7042. [Google Scholar] [CrossRef]
- Andy, F. Discovering Statistics Using SPSS: (And Sex and Drugs and Rock “n” Roll), 3rd ed.; SAGE Publications: Los Angeles, CA, USA, 2009. [Google Scholar]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 350, pp. 327–328. [Google Scholar]
- Cohen, J. Quantitative methods in psychology: A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Berti, B.; Momi, D.; Sprugnoli, G.; Neri, F.; Bonifazi, M.; Rossi, A.; Muscettola, M.M.; Benocci, R.; Santarnecchi, E.; Rossi, S. Peculiarities of Functional Connectivity-including Cross-modal Patterns-in Professional Karate Athletes: Correlations with Cognitive and Motor Performances. Neural Plast. 2019, 2019, 6807978. [Google Scholar] [CrossRef]
- Sbriccoli, P.; Camomilla, V.; Di Mario, A.; Quinzi, F.; Figura, F.; Felici, F. Neuromuscular Control Adaptations in Elite Athletes: The Case of Top Level Karateka. Eur. J. Appl. Physiol. 2010, 108, 1269–1280. Available online: https://link.springer.com/article/10.1007/s00421-009-1338-5 (accessed on 22 July 2022). [CrossRef]
- Quinzi, F.; Rosellini, G.; Sbriccoli, P. Lower Limb Maximal Power Predicts Punching Speed in Different Static and Dynamic Attacking Techniques in Karate. J. Strength Cond. Res. 2022, 36, 1353–1359. [Google Scholar] [CrossRef]
- Zago, M.; Codari, M.; Iaia, F.M.; Sforza, C. Multi-segmental Movements as a Function of Experience in Karate. J. Sports Sci. 2017, 35, 1515–1522. [Google Scholar] [CrossRef]
- Quinzi, F.; Sbriccoli, P.; Alderson, J.; Di Mario, A.; Camomilla, V. Intra-limb Coordination in Karate Kicking: Effect of Impacting or not Impacting a Target. Hum. Mov. Sci. 2014, 33, 108–119. [Google Scholar] [CrossRef]
- Nuri, L.; Shadmehr, A.; Ghotbi, N.; Attarbashi Moghadam, B. Reaction Time and Anticipatory Skill of Athletes in Open and Closed Skill-Dominated Sport. Eur. J. Sport Sci. 2013, 13, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.; Valenzano, A.; Moscatelli, F.; Salerno, M.; Sessa, F.; Triggiani, A.I.; Viggiano, A.; Capranica, L.; Marsala, G.; De Luca, V.; et al. Primary Motor Cortex Excitability in Karate Athletes: A Transcranial Magnetic Stimulation Study. Front. Physiol. 2017, 8, 695. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.E.; Bain, P.G.; Day, B.L.; Husain, M. Individual Differences in Expert Motor Coordination Associated with White Matter Microstructure in the Cerebellum. Cereb. Cortex 2013, 23, 2282–2292. [Google Scholar] [CrossRef] [PubMed]
- Verburgh, L.; Scherder, E.J.A.; van Lange, P.A.M.; Oosterlaan, J. The Key to Success in Elite Athletes? Explicit and Implicit Motor Learning in Youth Elite and Non-Elite Soccer Players. J. Sports Sci. 2016, 34, 1782–1790. [Google Scholar] [CrossRef]
- Cazzola, D.; Pavei, G.; Preatoni, E. Can Coordination Variability Identify Performance Factors and Skill Level in Competitive Sport? The Case of Race Walking. J. Sport Health Sci. 2016, 5, 35–43. [Google Scholar] [CrossRef]
- Kageyama, M.; Sugiyama, T.; Takai, Y.; Kanehisa, H.; Maeda, A. Kinematic and Kinetic Profiles of Trunk and Lower Limbs During Baseball Pitching in Collegiate Pitchers. J. Sport Sci. Med. 2014, 13, 742–750. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234942/ (accessed on 22 July 2022).
- Scarborough, D.M.; Leonard, N.K.; Mayer, L.W.; Oh, L.S.; Berkson, E.M. The Association of Baseball Pitch Delivery and Kinematic Sequence on Stresses at the Shoulder and Elbow Joints. J. Sport Sci. Med. 2021, 20, 94–100. [Google Scholar] [CrossRef]
- Oliver, G.D.; Keeley, D.W. Pelvis and Torso Kinematics and Their Relationship to Shoulder Kinematics in High-school Baseball Pitchers. J. Strength Cond. Res. 2010, 24, 3241–3246. [Google Scholar] [CrossRef]
Variable/Test | RPNH | RPH | RPSM |
---|---|---|---|
tHAS (ms) | –155.89 ± 28.98 | –207.89 ± 42.97 | –242.38 ± 39.37 |
tHA (ms) | –89.89 ± 23.44 | –79.44 ± 27.88 | –83.21 ± 32.53 |
tHV (ms) | –40.56 ± 15.71 | –33.33 ± 13.01 | –32.50 ± 12.01 |
tBAS (ms) | –138.11 ± 48.21 | –211.33 ± 37.88 | –228.21 ± 53.13 |
tBA (ms) | –309.89 ± 201.28 | –196.11 ± 25.96 | –254.17 ± 125.06 |
tBV (ms) | –87.78 ± 64.21 | –44.22 ± 36.49 | –55.00 ± 38.62 |
tBRa (ms) | –15.22 ± 35.72 | 38.78 ± 39.77 | 29.29 ± 50.64 |
HA (g0) | 5.92 ± 1.64 | 6.73 ± 1.22 | 6.48 ± 1.05 |
HV (m/s) | 3.89 ± 0.90 | 6.20 ± 0.70 | 6.58 ± 0.64 |
BA (g0) | 0.21 ± 0.34 | 0.51 ± 0.25 | 0.31 ± 0.21 |
BV (m/s) | 0.10 ± 0.10 | 0.97 ± 0.41 | 1.18 ± 0.20 |
BRa (deg) | 14.35 ± 4.96 | 74.95 ± 15.02 | 64.76 ± 13.93 |
tHAS | tHA | tHV | tBAS | tBA | tBV | |
---|---|---|---|---|---|---|
Chi–Square | 73.64 | 9.44 | 6.51 | 57.60 | 5.78 | 20.04 |
df | 2 | 2 | 2 | 2 | 2 | 2 |
Asymptotic Significance | 0.000 | 0.009 | 0.039 | 0.000 | 0.056 | 0.000 |
tBRa | HA | HV | BA | BV | BRa | |
Chi–Square | 38.91 | 12.49 | 87.21 | 37.59 | 95.02 | 91.12 |
df | 2 | 2 | 2 | 2 | 2 | 2 |
Asymptotic Significance | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 |
Test | tHAS (ms) | tHA (ms) | tHV (ms) | tBAS (ms) | tBA (ms) | tBV (ms) | |
---|---|---|---|---|---|---|---|
RPNH vs. RPH | U | 290.00 | 677.00 | 759.50 | 231.00 | 827.00 | 511.00 |
Sig. | 0.000 | 0.007 | 0.040 | 0.000 | 0.134 | 0.000 | |
r | –0.615 | –0.286 | –0.217 | –0.665 | –0.158 | –0.427 | |
RPNH vs. RPSM | U | 22.00 | 643.50 | 673.50 | 161.00 | 911.50 | 539.50 |
Sig. | 0.000 | 0.010 | 0.020 | 0.000 | 0.776 | 0.001 | |
r | –0.841 | –0.276 | –0.249 | –0.714 | –0.031 | –0.370 | |
RPH vs. RPSM | U | 478.50 | 919.00 | 912.00 | 789.50 | 632.00 | 794.50 |
Sig. | 0.000 | 0.824 | 0.777 | 0.186 | 0.008 | 0.201 | |
r | –0.425 | –0.024 | –0.030 | –0.142 | –0.286 | –0.137 | |
tBRa (ms) | HA (g0) | HV (m/s) | BA (g0) | BV (m/s) | BRa (deg) | ||
RPNH vs. RPH | U | 265.00 | 622.00 | 40.00 | 328.00 | 1.00 | 0.00 |
Sig. | 0.000 | 0.002 | 0.000 | 0.000 | 0.000 | 0.000 | |
r | –0.637 | –0.332 | –0.827 | –0.582 | –0.861 | –0.861 | |
RPNH vs. RPSM | U | 440.50 | 616.00 | 6.00 | 542.00 | 0.00 | 0.00 |
Sig. | 0.000 | 0.005 | 0.000 | 0.001 | 0.000 | 0.000 | |
r | –0.461 | –0.300 | –0.855 | –0.367 | –0.861 | –0.861 | |
RPH vs. RPSM | U | 754.00 | 830.00 | 652.00 | 494.00 | 482.00 | 646.00 |
Sig. | 0.104 | 0.329 | 0.013 | 0.000 | 0.000 | 0.011 | |
r | –0.174 | –0.105 | –0.267 | –0.411 | –0.422 | –0.272 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1. | tHAS | – | |||||||||||
2. | tHA | 0.33 ** | – | ||||||||||
3. | tHV | 0.38 ** | 0.76 ** | – | |||||||||
4. | tBAS | 0.46 ** | 0.29 ** | 0.38 ** | – | ||||||||
5. | tBA | 0.18 * | 0.26 ** | 0.32 ** | 0.12 | – | |||||||
6. | tBV | 0.01 | 0.25 ** | 0.11 | 0.10 | 0.59 ** | – | ||||||
7. | tBRa | 0.10 | 0.13 | 0.09 | −0.14 | 0.22 ** | 0.06 | – | |||||
8. | HA | 0.31 ** | 0.33 ** | 0.25 ** | 0.11 | 0.46 ** | 0.18 * | 0.24 ** | – | ||||
9. | HV | –0.24 ** | 0.27 ** | 0.23 ** | –0.07 | 0.17 | 0.10 | –0.07 | 0.39 ** | – | |||
10. | BA | –0.05 | 0.18 * | 0.19 * | –0.38 ** | 0.60 ** | 0.44 ** | 0.33 ** | 0.39 ** | 0.13 | – | ||
11. | BV | –0.20 * | 0.08 | –0.02 | –0.24 ** | 0.08 | 0.38 ** | 0.03 | 0.03 | 0.24 ** | 0.25 ** | – | |
12. | BRa | –0.28 ** | 0.19 * | 0.09 | –0.23 ** | 0.29 ** | 0.43 ** | 0.48 ** | 0.27 ** | 0.30 ** | 0.45 ** | 0.55 ** | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuković, V.; Umek, A.; Dopsaj, M.; Kos, A.; Marković, S.; Koropanovski, N. Variability and the Correlation of Kinematic and Temporal Parameters in Different Modalities of the Reverse Punch Measured by Sensors. Appl. Sci. 2023, 13, 10348. https://doi.org/10.3390/app131810348
Vuković V, Umek A, Dopsaj M, Kos A, Marković S, Koropanovski N. Variability and the Correlation of Kinematic and Temporal Parameters in Different Modalities of the Reverse Punch Measured by Sensors. Applied Sciences. 2023; 13(18):10348. https://doi.org/10.3390/app131810348
Chicago/Turabian StyleVuković, Vesna, Anton Umek, Milivoj Dopsaj, Anton Kos, Stefan Marković, and Nenad Koropanovski. 2023. "Variability and the Correlation of Kinematic and Temporal Parameters in Different Modalities of the Reverse Punch Measured by Sensors" Applied Sciences 13, no. 18: 10348. https://doi.org/10.3390/app131810348
APA StyleVuković, V., Umek, A., Dopsaj, M., Kos, A., Marković, S., & Koropanovski, N. (2023). Variability and the Correlation of Kinematic and Temporal Parameters in Different Modalities of the Reverse Punch Measured by Sensors. Applied Sciences, 13(18), 10348. https://doi.org/10.3390/app131810348