A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method
Abstract
:1. Introduction
2. Hybrid CM-Enabled DBN Method
2.1. Dynamic Risk Assessment Framework for Cable Fires
2.2. Dynamic Bayesian Network
2.3. Cloud Model Theory
2.3.1. Cloud Model
2.3.2. CM-Based Membership Degree
2.4. Importance Measure
3. Case Study
3.1. DBN Establishment
3.1.1. Basic Risk Factors Identification and Risk Evolution Mechanism Analysis
3.1.2. Network Structure and Parameter Determination
3.2. Collection of Processing Data Based on CM
3.2.1. Evaluation Standard Cloud Determination
3.2.2. State Membership Degree Calculation
3.3. Dynamic Risk Reasoning and Analysis
3.3.1. Dynamic Risk Profiles
3.3.2. Dynamic Importance Analysis
4. Discussion
4.1. Discussion on Dynamic Risk Reasoning and Importance Analysis
4.2. Comparison with Traditional DBN Method
4.3. Limitations of the Proposed Method
5. Conclusions
- For the first time, DBN was applied to the dynamic risk assessment of cable fires, which not only realized the dynamic reasoning of fire risk values but also clearly depicted the state changes in risk factors.
- CM was used to convert sensor monitoring data and expert scoring data into the state membership degrees of the root node; then, the membership degrees were input into the DBN as a prior probability. Using CM-based data processing, randomness and fuzziness are emphasized in the risk assessment process, and additional information can be mined from the data.
- BM and FV importance was introduced to identify the key nodes from the two dimensions of risk prevention and risk control, respectively. Dynamic importance analysis can be realized based on its associated reasoning, which is conducive to reasonable risk prevention and timely risk control.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiohara, K.; Sugane, H.; Sato, M.; Adachi, K.; Nakanishi, T.; Mido, N.; Aoki, Y.; Hasegawa, T.; Ota, T.; Ogawa, M. Demonstration of a triaxial superconducting cable in a private chemical plant. IEEE Trans. Appl. Supercond. 2021, 31, 4801804. [Google Scholar] [CrossRef]
- Zhang, F.; Shang, W.; Zhang, B.; Cong, S. Design optimization of redundantly actuated cable-driven parallel robots for automated warehouse system. IEEE Access 2020, 8, 56867–56879. [Google Scholar] [CrossRef]
- Zhao, H.; Tong, J.; Zhao, J.; Wu, J. Failure characteristic of class 1E electrical cable used in the nuclear power plant exposed to fire. Prog. Nucl. Energy 2022, 150, 104292. [Google Scholar] [CrossRef]
- Liu, S.; Kopsidas, K. Risk-based underground cable circuit ratings for flexible wind power integration. IEEE Trans. Power Deliv. 2020, 36, 145–155. [Google Scholar] [CrossRef]
- Ak, M.F.; Yucesan, M.; Gul, M. Occupational health, safety and environmental risk assessment in textile production industry through a Bayesian BWM-VIKOR approach. Stoch. Environ. Res. Risk Assess. 2022, 36, 629–642. [Google Scholar] [CrossRef]
- Huang, X.; Nakamura, Y. A review of fundamental combustion phenomena in wire fires. Fire Technol. 2020, 56, 315–360. [Google Scholar] [CrossRef]
- Huang, P.; Chen, M.; Chen, K.; Zhang, H.; Yu, L.; Liu, C. A combined real-time intelligent fire detection and forecasting approach through cameras based on computer vision method. Process Saf. Environ. Prot. 2022, 164, 629–638. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, H.; He, L.; Peng, L.; Cheng, C.; Chow, W. Improved model for estimating sidewall effect on the fire heat release rate of horizontal cable tray. Process Saf. Environ. Prot. 2021, 149, 831–838. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, H.; Tong, L. Experimental study on the fire protection properties of PVC sheath for old and new cables. J. Hazard. Mater. 2010, 179, 373–381. [Google Scholar] [CrossRef]
- Shea, J.J. Identifying causes for certain types of electrically initiated fires in residential circuits. Fire Mater. 2011, 35, 19–42. [Google Scholar] [CrossRef]
- Babrauskas, V. Electric arc explosions—A review. Fire Saf. J. 2017, 89, 7–15. [Google Scholar] [CrossRef]
- Zhu, H.; Ji, J.; Nie, J. Early fire evolution and alarm characteristics of cable fires in long and narrow spaces. Fire Saf. J. 2022, 131, 103627. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Gao, Y.; Sun, J.; Lyu, H.-F.; Yu, T.; Yang, S.; Wang, Y. Analysis of overload induced arc formation and beads characteristics in a residential electrical cable. Fire Saf. J. 2022, 131, 103626. [Google Scholar] [CrossRef]
- He, L.; Ma, G.; Hu, Q.; Cai, Q.; Bai, Y.; Tang, S.; Tan, J. A novel method for risk assessment of cable fires in utility tunnel. Math. Probl. Eng. 2019, 2019, 2563012. [Google Scholar] [CrossRef]
- Kim, M.O.; Kim, K.; Yun, J.H.; Kim, M.K. Fire risk assessment of cable bridges for installation of firefighting facilities. Fire Saf. J. 2020, 115, 103146. [Google Scholar] [CrossRef]
- Chen, X.; Huang, G.; Gao, X.; Ou, S.; Li, Y.; Hezam, I.M. BN-RA: A Hybrid Model for Risk Analysis of Overload-Induced Early Cable Fires. Appl. Sci. 2021, 11, 8922. [Google Scholar] [CrossRef]
- Singh, R.S.; Cobben, S.; Ćuk, V. PMU-based cable temperature monitoring and thermal assessment for dynamic line rating. IEEE Trans. Power Deliv. 2020, 36, 1859–1868. [Google Scholar] [CrossRef]
- Xie, S.; Chen, Y.; Dong, S.; Zhang, G. Risk assessment of an oil depot using the improved multi-sensor fusion approach based on the cloud model and the belief Jensen-Shannon divergence. J. Loss Prev. Process Ind. 2020, 67, 104214. [Google Scholar] [CrossRef]
- Li, J.; Lu, G.; Niu, T.; Zhang, J. Developing an online air quality warning system based on streaming data for dynamic environmental management. J. Clean. Prod. 2020, 273, 122953. [Google Scholar] [CrossRef]
- Wu, X.; Duan, J.; Zhang, L.; AbouRizk, S.M. A hybrid information fusion approach to safety risk perception using sensor data under uncertainty. Stoch. Environ. Res. Risk Assess. 2018, 32, 105–122. [Google Scholar] [CrossRef]
- Wang, L.; Yan, F.; Wang, F.; Li, Z. FMEA-CM based quantitative risk assessment for process industries—A case study of coal-to-methanol plant in China. Process Saf. Environ. Prot. 2021, 149, 299–311. [Google Scholar] [CrossRef]
- Guo, X.; Ji, J.; Khan, F.; Ding, L.; Tong, Q. A novel fuzzy dynamic Bayesian network for dynamic risk assessment and uncertainty propagation quantification in uncertainty environment. Saf. Sci. 2021, 141, 105285. [Google Scholar] [CrossRef]
- Raveendran, A.; Renjith, V.; Madhu, G. A comprehensive review on dynamic risk analysis methodologies. J. Loss Prev. Process Ind. 2022, 76, 104734. [Google Scholar] [CrossRef]
- Ropero, R.F.; Nicholson, A.E.; Aguilera, P.A.; Rumí, R. Learning and inference methodologies for hybrid dynamic Bayesian networks: A case study for a water reservoir system in Andalusia, Spain. Stoch. Environ. Res. Risk Assess. 2018, 32, 3117–3135. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Yu, C.; Zheng, Y.; Wang, G. Dynamic risk analysis of offshore natural gas hydrates depressurization production test based on fuzzy CREAM and DBN-GO combined method. J. Nat. Gas Sci. Eng. 2021, 91, 103961. [Google Scholar] [CrossRef]
- Meng, H.; An, X. Dynamic risk analysis of emergency operations in deepwater blowout accidents. Ocean Eng. 2021, 240, 109928. [Google Scholar] [CrossRef]
- Li, D.; Liu, C.; Gan, W. A new cognitive model: Cloud model. Int. J. Intell. Syst. 2009, 24, 357–375. [Google Scholar] [CrossRef]
- Wang, P.; Xu, X.; Huang, S.; Cai, C. A linguistic large group decision making method based on the cloud model. IEEE Trans. Fuzzy Syst. 2018, 26, 3314–3326. [Google Scholar] [CrossRef]
- Shan, B.; Guo, S.; Wang, Y.; Li, H.; Guo, P. Vine copula and cloud model-based programming approach for agricultural water allocation under uncertainty. Stoch. Environ. Res. Risk Assess. 2021, 35, 1895–1915. [Google Scholar] [CrossRef]
- Ramirez-Marquez, J.E.; Coit, D.W. Composite importance measures for multi-state systems with multi-state components. IEEE Trans. Reliab. 2005, 54, 517–529. [Google Scholar] [CrossRef]
- Kowal, K. Lifetime reliability and availability simulation for the electrical system of HTTR coupled to the electricity-hydrogen cogeneration plant. Reliab. Eng. Syst. Saf. 2022, 223, 108468. [Google Scholar] [CrossRef]
- Hanea, A.M.; Gheorghe, M.; Hanea, R.; Ababei, D. Non-parametric Bayesian networks for parameter estimation in reservoir simulation: A graphical take on the ensemble Kalman filter (part I). Comput. Geosci. 2013, 17, 929–949. [Google Scholar] [CrossRef]
- Heckerman, D.; Geiger, D.; Chickering, D.M. Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 1995, 20, 197–243. [Google Scholar] [CrossRef]
- Han, Y.; Zhen, X.; Huang, Y. Hybrid dynamic risk modelling for safety critical equipment on offshore installations. Process Saf. Environ. Prot. 2021, 156, 482–495. [Google Scholar] [CrossRef]
- Murphy, K.P. Dynamic Bayesian Networks: Representation, Inference and Learning; University of California, Berkeley: Berkeley, CA, USA, 2002. [Google Scholar]
- Kammouh, O.; Gardoni, P.; Cimellaro, G.P. Probabilistic framework to evaluate the resilience of engineering systems using Bayesian and dynamic Bayesian networks. Reliab. Eng. Syst. Saf. 2020, 198, 106813. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Q.; Cai, B.; Shi, X.; Zheng, C.; Liu, Y. Risk coupling analysis of subsea blowout accidents based on dynamic Bayesian network and NK model. Reliab. Eng. Syst. Saf. 2022, 218, 108160. [Google Scholar] [CrossRef]
- Li, Z.; Wang, T.; Ge, W.; Wei, D.; Li, H. Risk analysis of earth-rock dam breach based on dynamic Bayesian network. Water 2019, 11, 2305. [Google Scholar] [CrossRef]
- Wang, G.; Xu, C.; Li, D. Generic normal cloud model. Inf. Sci. 2014, 280, 1–15. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, J.; Lian, Y.; Lin, K.; Gao, X.; Lan, T.; Luo, J.; Song, F. Cloud model combined with multiple weighting methods to evaluate hydrological alteration and its contributing factors. J. Hydrol. 2022, 610, 127794. [Google Scholar] [CrossRef]
- Guo, Q.; Amin, S.; Hao, Q.; Haas, O. Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models. Reliab. Eng. Syst. Saf. 2020, 201, 106956. [Google Scholar] [CrossRef]
- Gao, P.; Li, W.; Sun, Y.; Liu, S. Risk assessment for gas transmission station based on cloud model based multilevel Bayesian network from the perspective of multi-flow intersecting theory. Process Saf. Environ. Prot. 2022, 159, 887–898. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Fang, G.; Ye, J.; Lu, C. Benefit evaluation of East Route Project of South to North Water Transfer based on trapezoid cloud model. Agric. Water Manag. 2021, 254, 106960. [Google Scholar] [CrossRef]
- Ramirez-Marquez, J.E.; Coit, D.W. Multi-state component criticality analysis for reliability improvement in multi-state systems. Reliab. Eng. Syst. Saf. 2007, 92, 1608–1619. [Google Scholar] [CrossRef]
- Li, M.; Wang, D.; Shan, H. Risk assessment of mine ignition sources using fuzzy Bayesian network. Process Saf. Environ. Prot. 2019, 125, 297–306. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Wang, L.; Fan, M.; Li, W. The state of the art of combustion behavior of live wires and cables. Mater. Rev. 2017, 31, 1–9. [Google Scholar]
- Campbell, S. Determining overall risk. J. Risk Res. 2005, 8, 569–581. [Google Scholar] [CrossRef]
- Aven, T. The risk concept—Historical and recent development trends. Reliab. Eng. Syst. Saf. 2012, 99, 33–44. [Google Scholar] [CrossRef]
- Zhou, T.; Dong, Z.; Chen, X.; Ran, Q. Decision support model for ecological operation of reservoirs based on dynamic Bayesian Network. Water 2021, 13, 1658. [Google Scholar] [CrossRef]
- Bregoli, A.; Scutari, M.; Stella, F. A constraint-based algorithm for the structural learning of continuous-time Bayesian networks. Int. J. Approx. Reason. 2021, 138, 105–122. [Google Scholar] [CrossRef]
- Sajid, Z. A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a US biofuel industry. Renew. Sustain. Energy Rev. 2021, 151, 111574. [Google Scholar] [CrossRef]
Inner Conductor | Insulating Material | Insulation Thickness (mm) | Rated Voltage (V) | Working Temperature (°C) |
---|---|---|---|---|
Bare copper wire | PVC | 0.6 | 300/500 | −25~70 |
Node | Description | States | Node | Description | States |
---|---|---|---|---|---|
X1 | Voltage | S0: safety (0~300 V) S1: mild overload (300~345 V) S2: severe overload (>345 V) | Y1 | Insulating capacity | S0: good S1: general S2: bad |
X2 | Current | S0: safety (0~10 A) S1: mild overload (10~18 A) S2: severe overload (>18 A) | Y2 | Temperature rise degree | S0: low S1: general S2: high |
X3 | Ambient temperature | S0: normal (0~40 °C) S1: relatively high (40~70 °C) S2: very high (>70 °C) | Y3 | Loose contact | S0: false S1: true |
X4 | Ambient humidity | S0: normal (30~65%) S1: relatively high (65~85%) S2: very high (>85%) | Y4 | Poor heat dissipation | S0: false S1: true |
X5 | Damage degree | S0: slight (0~2) S1: medium (2~5) S2: severe (5~10) | Y5 | Insulation breakdown risk | S0: low S1: medium S2: high |
X6 | Aging degree | S0: low (0~2) S1: medium (2~5) S2: severe (5~10) | Y6 | Overheating risk | S0: low S1: medium S2: high |
X7 | Connection quality | S0: good (8~10) S1: general (5~8) S2: bad (0~5) | Y7 | Pyrolysis risk | S0: low S1: medium S2: high |
X8 | Laying spacing | S0: sufficient (8~10) S1: relatively small (5~8) S2: very small (0~5) | Z | Fire | S0: false S1: true |
Y5 | Y6 | Y7 | Z | |
---|---|---|---|---|
False | True | |||
S0 | S0 | S0 | 1.000 | 0.000 |
S0 | S0 | S1 | 1.000 | 0.000 |
S0 | S0 | S2 | 1.000 | 0.000 |
S0 | S1 | S0 | 0.795 | 0.205 |
S0 | S1 | S1 | 0.653 | 0.347 |
S0 | S1 | S2 | 0.500 | 0.500 |
S0 | S2 | S0 | 0.302 | 0.698 |
S0 | S2 | S1 | 0.162 | 0.838 |
S0 | S2 | S2 | 0.000 | 1.000 |
S1 | S0 | S0 | 0.500 | 0.500 |
S1 | S0 | S1 | 0.311 | 0.689 |
S1 | S0 | S2 | 0.000 | 1.000 |
S1 | S1 | S0 | 0.212 | 0.788 |
S1 | S1 | S1 | 0.000 | 1.000 |
S1 | S1 | S2 | 0.000 | 1.000 |
S1 | S2 | S0 | 0.000 | 1.000 |
S1 | S2 | S1 | 0.000 | 1.000 |
S1 | S2 | S2 | 0.000 | 1.000 |
S2 | S0 | S0 | 0.000 | 1.000 |
S2 | S0 | S1 | 0.000 | 1.000 |
S2 | S0 | S2 | 0.000 | 1.000 |
S2 | S1 | S0 | 0.000 | 1.000 |
S2 | S1 | S1 | 0.000 | 1.000 |
S2 | S1 | S2 | 0.000 | 1.000 |
S2 | S2 | S0 | 0.000 | 1.000 |
S2 | S2 | S1 | 0.000 | 1.000 |
S2 | S2 | S2 | 0.000 | 1.000 |
Nodes | Eight Expert Scores | |||||||
---|---|---|---|---|---|---|---|---|
X5 | 0.8 | 0.7 | 1.0 | 0.9 | 1.2 | 1.5 | 1.0 | 1.5 |
X6 | 1.0 | 0.8 | 0.7 | 0.8 | 0.9 | 0.7 | 0.8 | 0.5 |
X7 | 8.2 | 8.5 | 8.0 | 8.5 | 8.5 | 8.0 | 8.2 | 8.0 |
X8 | 6.0 | 5.0 | 6.0 | 5.5 | 6.0 | 5.0 | 6.5 | 5.5 |
Nodes | S0 | S1 | S2 |
---|---|---|---|
) | ) | ) | |
X1 | (1.000, 0.333, 0.100) | (3.500, 0.500, 0.100) | (7.500, 0.833, 0.100) |
X2 | (1.000, 0.333, 0.100) | (3.500, 0.500, 0.100) | (7.500, 0.833, 0.100) |
X3 | (9.000, 0.333, 0.100) | (6.500, 0.500, 0.100) | (2.500, 0.833, 0.100) |
X4 | (9.000, 0.333, 0.100) | (6.500, 0.500, 0.100) | (2.500, 0.833, 0.100) |
X5 | (277.500, 7.500, 1.000) | (322.500, 7.500, 1.000) | (367.500, 7.500, 1.000) |
X6 | (5.000, 1.667, 0.200) | (14.000, 1.333, 0.200) | (22.000, 1.333, 0.200) |
X7 | (20.000, 6.670, 0.500) | (55.000, 5.000, 0.500) | (85.000, 5.000, 0.500) |
X8 | (47.500, 5.833, 0.500) | (75.000, 3.330, 0.500) | (92.500, 2.500, 0.500) |
Nodes | Membership Degrees | |||
---|---|---|---|---|
S0 | S1 | S2 | ||
X5 | (1.075, 0.305, 0.051) | 0.995 | 0.005 | 0.000 |
X6 | (0.775, 0.133, 0.066) | 0.999 | 0.001 | 0.000 |
X7 | (8.238, 0.247, 0.082) | 0.949 | 0.051 | 0.000 |
X8 | (5.688, 0.548, 0.139) | 0.000 | 0.981 | 0.019 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Huang, G.; Xiang, Z.; Yang, Y.; Gao, X. A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method. Appl. Sci. 2023, 13, 10384. https://doi.org/10.3390/app131810384
Gao S, Huang G, Xiang Z, Yang Y, Gao X. A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method. Applied Sciences. 2023; 13(18):10384. https://doi.org/10.3390/app131810384
Chicago/Turabian StyleGao, Shenyuan, Guozhong Huang, Zhijin Xiang, Yan Yang, and Xuehong Gao. 2023. "A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method" Applied Sciences 13, no. 18: 10384. https://doi.org/10.3390/app131810384
APA StyleGao, S., Huang, G., Xiang, Z., Yang, Y., & Gao, X. (2023). A Novel Risk Assessment for Cable Fires Based on a Hybrid Cloud-Model-Enabled Dynamic Bayesian Network Method. Applied Sciences, 13(18), 10384. https://doi.org/10.3390/app131810384