The Adhesion and Moisture Damage Resistance between Castor Oil-Based Bio-Asphalt and Aggregates under the Action of Thermal-Oxidative Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Base Asphalt
2.1.2. Bio-Oil
2.1.3. Aggregates
2.2. Test Methods
2.2.1. Preparation of Bio-Asphalts
2.2.2. Aging Simulation of COBA
2.2.3. Boiling Test
2.2.4. Photoelectric Colorimetry
2.2.5. Contact Angle Test
2.2.6. Contact Angle Moisture Susceptibly Test
2.2.7. Fourier Transform Infrared Reflection (FTIR) Test
3. Results and Discussion
3.1. The Boiling Results
3.2. The Photoelectric Colorimetry Results
3.3. The Contact Angle Test Results
3.4. The Contact Angle Moisture Susceptibly Results
3.5. FTIR Results
3.6. Correlation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, L.; Tao, M.; Liu, Z.; Cao, Z.; Zhu, J.; Gao, J.; Van den bergh, W.; Chailleux, E.; Huang, Y.; Ma, Y.; et al. Biomass valorization toward sustainable asphalt pavements: Progress and prospects. Waste Manag. 2023, 165, 159–178. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Ma, T.; Zhang, Y.; Gu, L.; Chen, X. Applications of vegetable oils and their derivatives as Bio-Additives for use in asphalt binders: A review. Constr. Build. Mater. 2023, 383, 131312. [Google Scholar] [CrossRef]
- Ameri, A.; Haghshenas, H.F.; Fini, E.H. Future Directions for Applications of Bio-Oils in the Asphalt Industry: A Step to Sequester Carbon in Roadway Infrastructure. Energy Fuels 2023, 37, 4791–4815. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, D.; Ye, Y. Separation of Chemicals from Bio-oil and Their Application Prospects. Chem. Ind. For. Prod. 2013, 33, 137–143. (In Chinese) [Google Scholar]
- Mohan, D.; Pittman, C.U., Jr.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Yang, B.; Li, H.; Sun, Y.; Zhang, H.; Liu, J.; Yang, J.; Zhang, X. Chemo-rheological, mechanical, morphology evolution and environmental impact of aged asphalt binder coupling thermal oxidation, ultraviolet radiation and water. J. Clean. Prod. 2023, 388, 135866. [Google Scholar] [CrossRef]
- Ding, Y.; Li, D.; Zhang, H.; Deng, M.; Mao, X.; Cao, X. Investigation of aging behavior of asphalt under multiple environmental conditions. J. Mater. Civ. Eng. 2022, 34, 04021419. [Google Scholar] [CrossRef]
- Júnior, J.L.O.L.; Babadopulos, L.F.A.L.; Soares, J.B. Moisture-induced damage resistance, stiffness and fatigue life of asphalt mixtures with different aggregate-binder adhesion properties. Constr. Build. Mater. 2019, 216, 166–175. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Yu, B.; Zhang, J.; Pei, J. Evaluation and optimization of asphalt binder and mixture modified with high activated crumb rubber content. Constr. Build. Mater. 2022, 314, 125676. [Google Scholar] [CrossRef]
- Ji, J.; Ma, R.; Zheng, W.; Suo, Z.; Xu, Y. Effect of Direct Coal Liquefaction Residue on Adhesion Characteristic between Asphalt and Aggregate. China J. Highw. Transp. 2018, 31, 27–33. (In Chinese) [Google Scholar]
- Huang, G.; Zhang, J.; Wang, Z.; Guo, F.; Li, Y.; Wang, L.; He, Y.; Xu, Z.; Huang, X. Evaluation of asphalt-aggregate adhesive property and its correlation with the interaction behavior. Constr. Build. Mater. 2023, 374, 130909. [Google Scholar] [CrossRef]
- Lyu, L.; Pei, J.; Hu, D.; Sun, G.; Fini, E.H. Bio-modified rubberized asphalt binder: A clean, sustainable approach to recycle rubber into construction. J. Clean. Prod. 2022, 345, 131151. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiah, M.B.; Sutanto, M.H.; Alaloul, W.S.; Usman, A. A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions. J. Clean. Prod. 2020, 249, 119357. [Google Scholar] [CrossRef]
- Zhao, S.; Huang, B.; Ye, X.P.; Shu, X.; Jia, X. Utilizing bio-char as a bio-modifier for asphalt cement: A sustainable application of bio-fuel by-product. Fuel 2014, 133, 52–62. [Google Scholar] [CrossRef]
- Ingrassia, L.P.; Lu, X.; Ferrotti, G.; Conti, C.; Canestrari, F. Investigating the “circular propensity” of road bio-binders: Effectiveness in hot recycling of reclaimed asphalt and recyclability potential. J. Clean. Prod. 2020, 255, 120193. [Google Scholar] [CrossRef]
- Lv, S.; Peng, X.; Liu, C.; Qu, F.; Zhu, X.; Tian, W.; Zheng, J. Aging resistance evaluation of asphalt modified by Buton-rock asphalt and bio-oil based on the rheological and microscopic characteristics. J. Clean. Prod. 2020, 257, 120589. [Google Scholar] [CrossRef]
- JTG E20-2011; Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering. People’s Communications Press: Beijing, China, 2011.
- JTG F40-2004; Technical Specifications for Construction of Highway Asphalt Pavements. China Communications Press: Beijing, China, 2004.
- Zhang, R.; Wang, H.; Jiang, X.; You, Z.; Yang, X.; Ye, M. Thermal storage stability of bio-oil modified asphalt. J. Mater. Civ. Eng. 2018, 30, 04018054. [Google Scholar] [CrossRef]
- Jiang, W.; Bao, R.; Lu, H.; Yuan, D.; Lu, R.; Sha, A.; Shan, J. Analysis of rheological properties and aging mechanism of bitumen after short-term and long-term aging. Constr. Build. Mater. 2021, 273, 121777. [Google Scholar] [CrossRef]
- Tian, Y.; Li, H.; Zhang, H.; Yang, B.; Zuo, X.; Wang, H. Comparative investigation on three laboratory testing methods for short-term aging of asphalt binder. Constr. Build. Mater. 2021, 266, 121204. [Google Scholar] [CrossRef]
- Yan, S.; Zhou, C.; Ouyang, J. Rejuvenation effect of waste cooking oil on the adhesion characteristics of aged asphalt to aggregates. Constr. Build. Mater. 2022, 327, 126907. [Google Scholar] [CrossRef]
- Hung, A.M.; Pahlavan, F.; Shakiba, S.; Chang, S.L.; Louie, S.M.; Fini, E.H. Preventing assembly and crystallization of alkane acids at the silica–bitumen interface to enhance interfacial resistance to moisture damage. Ind. Eng. Chem. Res. 2019, 58, 21542–21552. [Google Scholar] [CrossRef]
- Hung, A.M.; Mousavi, M.; Pahlavan, F.; Fini, E.H. Intermolecular interactions of isolated bio-oil compounds and their effect on bitumen interfaces. ACS Sustain. Chem. Eng. 2017, 5, 7920–7931. [Google Scholar] [CrossRef]
- Fini, E.H.; Hung, A.M.; Roy, A. Active mineral fillers arrest migrations of alkane acids to the interface of bitumen and siliceous surfaces. ACS Sustain. Chem. Eng. 2019, 7, 10340–10348. [Google Scholar] [CrossRef]
- Hosseinnezhad, S.; Shakiba, S.; Mousavi, M.; Louie, S.M.; Karnati, S.R.; Fini, E.H. Multiscale evaluation of moisture susceptibility of biomodified bitumen. ACS Appl. Bio. Mater. 2019, 2, 5779–5789. [Google Scholar] [CrossRef]
- Mousavi, M.; Oldham, D.; Fini, E.H. Using fundamental material properties to predict the moisture susceptibility of the asphalt binder: Polarizability and a moisture-induced shear-thinning index. ACS Appl. Bio. Mater. 2020, 3, 7399–7407. [Google Scholar] [CrossRef]
- Nivitha, M.R.; Prasad, E.; Krishnan, J.M. Ageing in modified bitumen using FTIR spectroscopy. Int. J. Pavement Eng. 2016, 17, 565–577. [Google Scholar] [CrossRef]
- Fan, Z.; Lin, J.; Chen, Z.; Liu, P.; Wang, D.; Oeser, M. Multiscale understanding of interfacial behavior between bitumen and aggregate: From the aggregate mineralogical genome aspect. Constr. Build. Mater. 2021, 271, 121607. [Google Scholar] [CrossRef]
- Fini, E.H.; Samieadel, A.; Rajib, A. Moisture damage and its relation to surface adsorption/desorption of rejuvenators. Ind. Eng. Chem. Res. 2020, 59, 13414–13419. [Google Scholar] [CrossRef]
- Hung, A.; Fini, E.H. Surface morphology and chemical mapping of UV-aged thin films of bitumen. ACS Sustain. Chem. Eng. 2020, 8, 11764–11771. [Google Scholar] [CrossRef]
- Rajib, A.I.; Shariati, S.; Fini, E.H. The effect of progressive aging on the bond strength of bitumen to siliceous stones. Appl. Surf. Sci. 2021, 550, 149324. [Google Scholar] [CrossRef]
- Ābele, A.; Merijs-Meri, R.; Bērziņa, R.; Zicāns, J.; Haritonovs, V.; Ivanova, T. Effect of bio-oil on rheological and calorimetric properties of RTFOT aged bituminous compositions. Int. J. Pavement Res. Technol. 2021, 14, 537–542. [Google Scholar] [CrossRef]
Property | Test Results | Specification | Technical Requirements | Reference Specification |
---|---|---|---|---|
Penetration (25 °C, 5 s, 100 g)/0.1 mm | 63 | T0604-2011 | 60~80 | JTG F40-2004 [18] |
Softening point/°C | 44.5 | T0606-2011 | ≥44 | |
Ductility (10 °C)/cm | 45 | T0605-2011 | ≥20 | |
Density/(g·cm−3) | 1.043 | T0603-2011 | - | |
Mass loss of RTFOT (163 °C, 85 min)/% | 0.17 | T0610-2011 | ≤±0.8 | |
Residual penetration ratio/% | 63 | T0604-2011 | ≥58 | |
Residual ductility (10 °C)/cm | 8 | T0605-2011 | ≥4 |
Types | Saturates/% | Aromatics/% | Resin/% | Asphaltene/% |
---|---|---|---|---|
Bio-oil | 25.5 | 45.6 | 6.7 | 19.4 |
Base asphalt | 26.6 | 51.8 | 6.8 | 14.8 |
Types | Elements (%) | Ash (%) | pH | Density (g/cm3) | ||||
---|---|---|---|---|---|---|---|---|
C | H | O | N | S | ||||
Bio-oil | 71.22 | 10.18 | 10.31 | 0.05 | 0.146 | 2.89 | 7.72 | 0.974 |
Base asphalt | 84.31 | 10.23 | 0.79 | 0.85 | 3.75 | — | 7.52 | 1.043 |
Content (%) | Penetration (0.1 mm) | Softening Point (°C) | Ductility (10 °C/cm) | Acid Value (mgKOH/g) |
---|---|---|---|---|
0% | 63 | 44.6 | 45 | 0.88 |
5% | 84 | 41.9 | 122 | 0.94 |
10% | 101 | 41.1 | 145 | 0.97 |
15% | 124 | 40 | 150 | 0.99 |
Aggregates | Main Oxide Content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|
CaO | MgO | SiO2 | Fe2O3 | Al2O3 | SO3 | P2O5 | MnO | TiO2 | |
Limestone | 76.65 | 21.03 | 1.77 | 0.23 | 0.14 | 0.06 | 0.05 | - | - |
Steel slag | 42.26 | 3.77 | 14.87 | 29.03 | 1.55 | 0.29 | 2.62 | 3.40 | 1.10 |
Test Liquids | Surface Free Energy Parameters (mJ/m2) | ||||
---|---|---|---|---|---|
Distilled water | 72.80 | 21.80 | 51.00 | 25.50 | 25.50 |
Formamide | 58.00 | 39.00 | 19.00 | 1.92 | 39.60 |
Ethylene glycol | 48.00 | 29.00 | 19.00 | 1.92 | 47.00 |
Aggregates | Surface Free Energy Parameters (mJ/m2) | ||||
---|---|---|---|---|---|
γ | γd | γp | γ+ | γ− | |
Limestone | 43.20 | 12.55 | 30.65 | 8.42 | 25.32 |
Steel slag | 46.48 | 15.05 | 31.43 | 5.29 | 27.95 |
Aging Condition | Content of Bio-Oil (%) | Contact Angle (°) | Surface Free Energy Parameters (mJ/m2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Distilled Water | Formamide | Ethylene Glycol | γ | γd | γp | γ+ | γ− | Wa | ||
Virgin | 0 | 106.20 | 91.33 | 83.64 | 20.38 | 18.82 | 1.56 | 0.01 | 1.61 | 40.76 |
5 | 104.11 | 88.40 | 85.40 | 23.00 | 21.33 | 1.67 | 0.02 | 1.73 | 46.00 | |
10 | 103.35 | 87.52 | 86.07 | 25.50 | 23.46 | 2.04 | 0.09 | 1.86 | 51.00 | |
15 | 103.04 | 87.00 | 87.12 | 26.78 | 24.56 | 2.22 | 0.14 | 1.88 | 53.56 | |
RTFOT85 | 0 | 101.43 | 85.10 | 78.89 | 21.88 | 19.63 | 2.25 | 0.09 | 1.91 | 43.76 |
5 | 102.50 | 85.56 | 78.98 | 23.57 | 21.61 | 1.96 | 0.005 | 1.64 | 47.14 | |
10 | 103.59 | 85.81 | 82.82 | 26.05 | 24.49 | 1.56 | 0.05 | 1.35 | 52.10 | |
15 | 104.48 | 86.34 | 78.69 | 27.69 | 26.50 | 1.19 | 0.20 | 1.19 | 55.38 | |
RTFOT385 | 0 | 100.90 | 83.79 | 76.13 | 18.19 | 16.23 | 1.96 | 0.68 | 1.68 | 36.38 |
5 | 101.85 | 84.53 | 77.06 | 18.80 | 17.43 | 1.37 | 0.40 | 1.53 | 37.60 | |
10 | 102.02 | 84.94 | 78.56 | 19.92 | 18.65 | 1.27 | 0.20 | 1.60 | 39.84 | |
15 | 103.00 | 85.20 | 79.23 | 22.83 | 21.83 | 1.00 | 0.10 | 1.36 | 45.66 |
Content of Bio-Oil/% | 0 | 5 | 10 | 15 | |
---|---|---|---|---|---|
Virgin | Limestone | ||||
Steel slag | |||||
RTFOT85 | Limestone | ||||
Steel slag | |||||
RTFOT385 | Limestone | ||||
Steel slag |
Aging Condition | Aggregates | Content of Bio-Oil/% | |||
---|---|---|---|---|---|
0 | 5 | 10 | 15 | ||
Virgin | Limestone | 4 | 4 | 4 | 4 |
Steel slag | 4 | 4 | 4 | 4 | |
RTFOT85 | Limestone | 4 | 4 | 4 | 3 |
Steel slag | 4 | 4 | 4 | 3 | |
RTFOT385 | Limestone | 3 | 3 | 3 | 3 |
Steel slag | 3 | 3 | 3 | 3 |
Content of Bio-Oil/% | Aging Condition | ||
---|---|---|---|
Virgin | RTFOT 85 | RTFOT 385 | |
0 | |||
5 | |||
10 | |||
15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Shi, Q.; Hu, P.; Ji, J.; Wen, L. The Adhesion and Moisture Damage Resistance between Castor Oil-Based Bio-Asphalt and Aggregates under the Action of Thermal-Oxidative Aging. Appl. Sci. 2023, 13, 10410. https://doi.org/10.3390/app131810410
Zhang R, Shi Q, Hu P, Ji J, Wen L. The Adhesion and Moisture Damage Resistance between Castor Oil-Based Bio-Asphalt and Aggregates under the Action of Thermal-Oxidative Aging. Applied Sciences. 2023; 13(18):10410. https://doi.org/10.3390/app131810410
Chicago/Turabian StyleZhang, Ran, Qingwen Shi, Pengkun Hu, Jie Ji, and Long Wen. 2023. "The Adhesion and Moisture Damage Resistance between Castor Oil-Based Bio-Asphalt and Aggregates under the Action of Thermal-Oxidative Aging" Applied Sciences 13, no. 18: 10410. https://doi.org/10.3390/app131810410
APA StyleZhang, R., Shi, Q., Hu, P., Ji, J., & Wen, L. (2023). The Adhesion and Moisture Damage Resistance between Castor Oil-Based Bio-Asphalt and Aggregates under the Action of Thermal-Oxidative Aging. Applied Sciences, 13(18), 10410. https://doi.org/10.3390/app131810410