Thermal and Acoustic Performance of Gypsum Plasters Mixed with Different Additives: Influence of Bio-Based, Synthetic, and Mineral Fillers
Abstract
:1. Introduction
2. Materials and Methods
- -
- Synthetic: Polyester Fiber (PF), Paraffin (Pa), and Glass Wool (GW), selected among the most used commercial ones;
- -
- Natural: Stipa Tenacissima (ST) or Alfa fiber, Palm Petiol (PPa), Sisal Fiber (SF), Straw (Sw), Corn Bristles (CB), Cork (Ck), and Chip-Sawdust (ChSd), very diffused in the local Moroccan area;
- -
- Mineral: Cement (Ce), Clay (Cl), Sand (Sa), and Refractory Cement (R.Ce).
3. Results
3.1. Thermal Properties
3.2. Acoustic Properties
4. Discussion
5. Conclusions
- -
- An increase in thermal performance with bio-additives: thermal conductivity in the 0.118 W/mK (with Petiol of Palm, PPa) to 0.238 W/mK (with Corn Bristles, CB) range, with a reduction up to 30% compared to pure gypsum plaster.
- -
- An improvement in the sound absorption properties with all types of additives. Sound absorption average index (SAA) in the 0.06 (cork, Ck) to 0.12 (Stipa Tenacissima, ST, and Sisal Fiber, SF) range were measured.
- -
- Higher sound insulation properties with ST and PPa (TL = 48–59 dB). However, straw and Sisal Fiber did not seem to affect the performance.
- -
- The density of the samples affects the performance. The reduction in density leads to better thermal performance with comparable sound absorption values. TL is slightly reduced, but significant values were measured.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cornaro, C.; Buratti, C. Energy Efficiency in Buildings and Innovative Materials for Building Construction. Appl. Sci. 2020, 10, 2866. [Google Scholar] [CrossRef]
- UNEP, United Nations Environment Programme—2022 Global Status Report for Buildings and Construction. 2022. Available online: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 20 July 2023).
- Hussain, A.; Calabria-Holley, J.; Lawrence, M.; Jiang, Y. Hygrothermal and mechanical characterisation of novel hemp shiv based thermal insulation composites. Constr. Build. Mater. 2019, 212, 561–568. [Google Scholar] [CrossRef]
- Mati-Baouche, N.; De Baynast, H.; Lebert, A.; Sun, S.; Lopez-Mingo, C.J.S.; Leclaire, P.; Michaud, P. Mechanical, thermal and acoustical characterizations of an insulating bio-based composite made from sunflower stalks particles and chitosan. Ind. Crops Prod. 2014, 58, 244–250. [Google Scholar] [CrossRef]
- El Hajj, N.; Dheilly, R.M.; Goullieux, A.; Aboura, Z.; Benzeggagh, M.L.; Quéneudec, M. Innovant agromaterials formulated with flax shaves and proteinic binder: Process and characterization. Compos. B Eng. 2012, 43, 381–390. [Google Scholar] [CrossRef]
- Collet, F.; Prétot, S.; Lanos, C. Hemp-straw composites: Thermal and hygric performances. Energy Procedia 2017, 139, 294–300. [Google Scholar] [CrossRef]
- Ismail, B.; Belayachi, N.; Hoxha, D. Optimizing performance of insulation materials based on wheat straw, lime and gypsum plaster composites using natural additives. Constr. Build. Mater. 2020, 254, 118959. [Google Scholar] [CrossRef]
- Sathiparan, N.; Rupasinghe, M.N.; Pavithra, B.H.M. Performance of coconut coir reinforced hydraulic cement mortar for surface plastering application. Constr. Build. Mater. 2017, 142, 23–30. [Google Scholar] [CrossRef]
- Belayachi, N.; Hoxha, D.; Slaimia, M. Impact of accelerated climatic aging on the behaviour of gypsum plaster-straw material for building thermal insulation. Constr. Build. Mater. 2016, 125, 912–918. [Google Scholar] [CrossRef]
- Gourlay, E.; Glé, P.; Marceau, S.; Foy, C.; Moscardelli, S. Effect of water content on the acoustical and thermal properties of hemp concretes. Constr. Build. Mater. 2017, 139, 512–523. [Google Scholar] [CrossRef]
- Lima, H.C., Jr.; Willrich, F.L.; Barbosa, N.P.; Rosa, M.A.; Cunha, B.S. Durability analysis of bamboo as concrete reinforcement. Mater. Struct. 2008, 41, 981–989. [Google Scholar] [CrossRef]
- Liuzzi, S.; Rubino, C.; Stefanizzi, P.; Petrella, A.; Boghetich, A.; Casavola, C.; Pappalettera, G. Hygrothermal properties of clayey plasters with olive fibers. Constr. Build. Mater. 2018, 158, 24–32. [Google Scholar] [CrossRef]
- Page, J.; Khadraoui, F.; Boutouil, M.; Gomina, M. Multi-physical properties of a structural concrete incorporating short flax fibers. Constr. Build. Mater. 2017, 140, 344–353. [Google Scholar] [CrossRef]
- Jiang, Y.; Phelipot-Mardele, A.; Collet, F.; Lanos, C.; Lemke, M.; Ansell, M.; Hussain, A.; Lawrence, M. Moisture buffer, fire resistance and insulation potential of novel bio-clay plaster. Constr. Build. Mater. 2020, 244, 118353. [Google Scholar] [CrossRef]
- Palumbo, M.; McGregor, F.; Heath, A.; Walker, P. The influence of two crop by products on the hygrothermal properties of earth plasters. Build. Environ. 2016, 105, 245–252. [Google Scholar] [CrossRef]
- Herrero, S.; Mayor, P.; Hernández-Olivares, F. Influence of proportion and particle size gradation of rubber from end-of-life tires on mechanical, thermal and acoustic properties of plaster–rubber mortars. Mater. Des. 2013, 47, 633–642. [Google Scholar] [CrossRef]
- Touil, M.; Rahmoun, O.; Iken, O.; El Harti, K.; Saadani, R.; Rahmoune, M. Exploring the thermal behaviour and thermo-mechanical properties of Ferula Communis reinforced plaster and mortar composites: An integrated experimental and numerical approach. Energy Convers. Manag. 2023, 289, 117119. [Google Scholar] [CrossRef]
- Bouzit, S.; Merli, F.; Sonebi, M.; Buratti, C.; Taha, M. Gypsum-plasters mixed with polystyrene balls for building insulation: Experimental characterization and energy performance. Constr. Build. Mater. 2021, 283, 122625. [Google Scholar] [CrossRef]
- Bicer, A.; Kar, F. Thermal and mechanical properties of gypsum plaster mixed with expanded polystyrene and tragacanth. Therm. Sci. Eng. Prog. 2017, 1, 59–65. [Google Scholar] [CrossRef]
- Fantucci, S.; Fenoglio, E.; Grosso, G.; Serra, V.; Perino, M.; Marino, V.; Dutto, M. Development of an aerogel-based thermal coating for the energy retrofit and the prevention of condensation risk in existing buildings. Sci. Technol. Built. Environ. 2019, 25, 1178–1186. [Google Scholar] [CrossRef]
- Stahl, T.; Brunner, S.; Zimmermann, M.; Ghazi Wakili, K. Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications. Energy Build. 2012, 44, 114–117. [Google Scholar] [CrossRef]
- Buratti, C.; Moretti, E.; Belloni, E.; Agosti, F. Development of innovative aerogel based plasters: Preliminary thermal and acoustic performance evaluation. Sustainability 2014, 6, 5839–5852. [Google Scholar] [CrossRef]
- Khalil, A.A.; Tawfik, A.; Hegazy, A.A.; El-Shahat, M.F. Effect of some waste additives on the physical and mechanical properties of gypsum plaster composites. Constr. Build. Mater. 2014, 68, 580–586. [Google Scholar] [CrossRef]
- Charai, M.; Salhi, M.; Horma, O.; Mezrhab, A.; Karkri, M.; Amraqui, S. Thermal and mechanical characterization of adobes bio-sourced with Pennisetum setaceum fibers and an application for modern buildings. Construct. Build. Mater. 2022, 326, 126809. [Google Scholar] [CrossRef]
- Mellaikhafi, A.; Tilioua, A.; Souli, H.; Garoum, M.; Alaoui Hamdi, M.A. Characterization of different earthen construction materials in oasis of south-eastern Morocco (Errachidia Province). Case Stud. Constr. Mater. 2021, 14, e00496. [Google Scholar] [CrossRef]
- Charai, M.; Mezrhab, A.; Moga, L.; Karkri, M. Hygrothermal, mechanical and durability assessment of vegetable concrete mixes made with Alfa fibers for structural and thermal insulating applications. Construct. Build. Mater. 2022, 335, 127518. [Google Scholar] [CrossRef]
- Saira, S.; Mandili, B.; Taqi, M.; El Bouari, A. Development of a new eco-friendly composite material based on gypsum reinforced with a mixture of cork fibre and cardboard waste for building thermal insulation. Compos. Commun. 2019, 16, 20–24. [Google Scholar] [CrossRef]
- Mounir, S.; Maaloufa, Y.; Cherki, A.B.; Khabbazi, A. Thermal properties of the composite material clay/granular cork. Constr. Build. Mater. 2014, 70, 183–190. [Google Scholar] [CrossRef]
- Hernández-Olivares, F.; Bollati, M.R.; Del Rio, M.; Parga-Landa, B. Development of cork-gypsum composites for building applications. Constr. Build. Mater. 1999, 13, 179–186. [Google Scholar] [CrossRef]
- Lamrani, M.; Laaroussi, N.; Khabbazi, A.; Khalfaoui, M.; Garoum, M.; Feiz, A. Experimental study of thermal properties of a new ecological building material based on peanut shells and plaster. Case Stud. Constr. Mater. 2017, 7, 294–304. [Google Scholar] [CrossRef]
- Charai, M.; Mghazli, M.O.; Channouf, S.; El hammouti, A.; Jagadesh, P.; Moga, L.; Mezrhab, A. Lightweight waste-based gypsum composites for building temperature and moisture control using coal fly ash and plant fibers. Constr. Build. Mater. 2023, 393, 132092. [Google Scholar] [CrossRef]
- Brencis, R.; Skujans, J.; Iljins, U.; Ziemelis, I.; Osits, N. Research on foam gypsum with hemp fibrous reinforcement. Chem. Eng. Trans. 2011, 25, 159–164. [Google Scholar]
- Morales-Conde, M.J.; Rodríguez-Liñán, C.; Pedreño-Rojas, M.A. Physical and mechanical properties of wood-gypsum composites from demolition material in rehabilitation works. Constr. Build. Mater. 2016, 114, 6–14. [Google Scholar] [CrossRef]
- El hammouti, A.; Charai, M.; Channouf, S.; Horma, O.; Mezrhab, A.; Karkri, M.; Tankari, M.A. Application analysis and environmental impact of straw reinforced gypsum plaster for improving the energy efficiency in buildings in the six climate zones of Morocco. J. Build. Eng. 2023, 74, 106829. [Google Scholar] [CrossRef]
- Bouzit, S.; Laasri, S.; Taha, M.; Laghzizil, A.; Hajjaji, A.; Merli, F.; Buratti, C. Characterization of Natural Gypsum Materials and Their Composites for Building Applications. Appl. Sci. 2019, 9, 2443. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lunghi, L.; Barbanera, M. Thermal Conductivity Measurements By Means of a New ‘Small Hot-Box’ Apparatus: Manufacturing, Calibration and Preliminary Experimental Tests on Different Materials. Int. J. Thermophys. 2016, 37, 47. [Google Scholar] [CrossRef]
- UNI EN 1934; Thermal Performance of Buildings—Determination of Thermal Resistance by Hot Box Method Using Heat Flow Meter—Masonry. Brithis Standards Institutions: London, UK, 2000.
- JCGM 100; GUM 1995 with Minor Corrections Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. BIPM, Bureau International des Poids et Mesures: Sèvres, France, 2008.
- ISO 10534-2; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. ISO: Geneva, Switzerland, 1998.
- Buratti, C.; Merli, F.; Moretti, E. Aerogel-based materials for building applications: Influence of granule size on thermal and acoustic performance. Energy Build. 2017, 152, 472–482. [Google Scholar] [CrossRef]
- ISO 10456; Building Materials and Products—Hygrothermal Propertie—Tabulated Design Values and Procedures for Determining Declared and Design Thermal Values. ISO: Geneva, Switzerland, 2007.
- ASTM C423-09A; Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method. ASTM International: West Conshohocken, PA, USA, 2009.
Code | Composition | Type of Additive | Dimensions of Samples | Thickness [m] | Density [kg/m3] |
---|---|---|---|---|---|
PS 100 | Safi Plaster 100% | --- | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.030 0.050 0.054 | 960 920 960 |
PS 80-PF 20 | Safi Plaster 80%–Polyester Fiber 20% | Synthetic | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.025 0.045 0.047 | 1022 1032 957 |
PS 80-Pa 20 | Safi Plaster 80%–Paraffin 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.030 0.050 0.056 | 932 930 920 | |
PS 80-GW 20 | Safi Plaster 80%–Glass Wool 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.026 0.040 0.039 | 871 930 935 | |
PS 80-ST 20 | Safi Plaster 80%–Stipa Tenacissima 20% | Natural | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.026 0.049 0.052 | 900 959 818 |
PS 80-PPa 20 | Safi Plaster 80%–Petiol of Palm 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.026 0.051 0.045 | 905 999 818 | |
PS 80-SF 20 | Safi Plaster 80%–Sisal Fiber 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.027 0.049 0.060 | 1098 1073 923 | |
PS 80-Sw 20 | Safi Plaster 80%–Straw 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.029 0.050 0.052 | 810 869 841 | |
PS 80-CB 20 | Safi Plaster 80%–Corn Bristles 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.028 0.042 0.046 | 969 1050 920 | |
PS 80-Ck 20 | Safi Plaster 80%–Cork 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.028 0.049 0.049 | 845 812 930 | |
PS 80-ChSd 20 | Safi Plaster 80%–Chips-Sawdust 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.023 0.043 0.045 | 1069 940 860 | |
PS 80-Ce 20 | Safi Plaster 80%–Cement 20% | Mineral | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.024 0.043 0.042 | 1329 1278 1236 |
PS 80-Cl 20 | Safi Plaster 80%–Clay 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.027 0.047 0.049 | 1182 1235 1114 | |
PS 80-Sa 20 | Safi Plaster 80%–Sand 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.026 0.046 0.048 | 1266 1189 1147 | |
PS 80-R.Ce 20 | Safi Plaster 80%–Refractory Cement 20% | 0.3 × 0.3 m2 ϕ 100 mm ϕ 29 mm | 0.026 0.044 0.045 | 1382 1406 1328 |
Code | ΔTair [°C] | Ts,average [°C] | qaverage [W/m2] | λ@31–33°C [W/mK] | λ@10°C [W/mK] |
---|---|---|---|---|---|
PS 100 | 21.7 | 33.1 | 73.08 | 0.282 | 0.257 |
Synthetic additives | |||||
PS 80-PF 20 | 26.8 | 31.2 | 76.57 | 0.169 | 0.155 |
PS 80-Pa 20 | 25.9 | 32.0 | 98.95 | 0.323 | 0.296 |
PS 80-GW 20 | 25.1 | 31.6 | 84.00 | 0.157 | 0.144 |
Natural additives | |||||
PS 80-ST 20 | 24.7 | 31.4 | 73.49 | 0.205 | 0.188 |
PS 80-PPa 20 | 24.0 | 32.5 | 73.84 | 0.198 | 0.181 |
PS 80-SF 20 | 25.8 | 31.9 | 80.90 | 0.214 | 0.196 |
PS 80-Sw 20 | 24.4 | 32.6 | 79.38 | 0.225 | 0.206 |
PS 80-CB 20 | 23.9 | 32.8 | 83.36 | 0.261 | 0.238 |
PS 80-Ck 20 | 25.4 | 31.9 | 76.38 | 0.215 | 0.197 |
PS 80-ChSd 20 | 25.5 | 32.1 | 96.34 | 0.259 | 0.237 |
Mineral additives | |||||
PS 80-Ce 20 | 24.4 | 31.6 | 85.30 | 0.300 | 0.275 |
PS 80-Cl 20 | 24.4 | 31.8 | 86.63 | 0.328 | 0.301 |
PS 80-Sa 20 | 23.9 | 31.8 | 82.00 | 0.301 | 0.276 |
PS 80-R.Ce 20 | 24.0 | 32.1 | 91.88 | 0.353 | 0.323 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merli, F.; Bouzit, S.; Taha, M.; Buratti, C. Thermal and Acoustic Performance of Gypsum Plasters Mixed with Different Additives: Influence of Bio-Based, Synthetic, and Mineral Fillers. Appl. Sci. 2023, 13, 10480. https://doi.org/10.3390/app131810480
Merli F, Bouzit S, Taha M, Buratti C. Thermal and Acoustic Performance of Gypsum Plasters Mixed with Different Additives: Influence of Bio-Based, Synthetic, and Mineral Fillers. Applied Sciences. 2023; 13(18):10480. https://doi.org/10.3390/app131810480
Chicago/Turabian StyleMerli, Francesca, Said Bouzit, Mohamed Taha, and Cinzia Buratti. 2023. "Thermal and Acoustic Performance of Gypsum Plasters Mixed with Different Additives: Influence of Bio-Based, Synthetic, and Mineral Fillers" Applied Sciences 13, no. 18: 10480. https://doi.org/10.3390/app131810480
APA StyleMerli, F., Bouzit, S., Taha, M., & Buratti, C. (2023). Thermal and Acoustic Performance of Gypsum Plasters Mixed with Different Additives: Influence of Bio-Based, Synthetic, and Mineral Fillers. Applied Sciences, 13(18), 10480. https://doi.org/10.3390/app131810480