Runway Pavement Structural Analysis Using Remote Laser Doppler Vibrometers
Abstract
:1. Introduction
2. Remote Laser Vibration Measurement System
2.1. Remote Laser Doppler Vibrometer
2.2. Deflection Test Scheme Based on RLDV
3. Compensation Methods
3.1. Angle Compensation
3.2. Vibration Compensation
3.2.1. Experimental Validation
3.2.2. Experimental Data Processing and Analysis
- Fourier Transform
- Filter Selection
- Vibration Data Processing and Analysis
4. Reliability Analysis of RLDV Tests
5. Conclusions
- The proposed deflection test scheme satisfies the non-stop, non-contact testing requirements at airports.
- The employed angle compensation and vibration compensation methodologies have demonstrated effective data processing. The vibration compensation method reduces the effect of fixed beam vibration on detection from 12.76% to 6.48%.
- There is a strong correlation between the RLDV and HWD test results, evidenced by an value of 0.94. This suggests that RLDV holds significant potential for intelligent detection of airport runway structural performance.
- Apply the RLDV to airport runway structural performance field tests and analyze the effects of aircraft, load, environment, and other factors on vibration signals and RLDV tests.
- Optimize the applied compensation method using extensive field experimental data.
- Establish a systematic measurement and evaluation system to provide a convenient and efficient method for evaluating pavement performance, including RLDV installation, data processing, performance analysis, etc.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fathi, A.; Mazari, M.; Saghafi, M.; Hosseini, A.; Kumar, S. Parametric study of pavement deterioration using machine learning algorithms. In International Airfield and Highway Pavements Conference 2019; American Society of Civil Engineers: Reston, VA, USA, 2019. [Google Scholar]
- Bruno, S.; Del Serrone, G.; Di Mascio, P.; Loprencipe, G.; Ricci, E.; Moretti, L. Technical proposal for monitoring thermal and mechanical stresses of a runway pavement. Sensors 2021, 21, 6797. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.; Wright, D.; M’Saoubi, R.; McGourlay, J.; Wallis, M.; Mantle, A.; Ghadbeigi, H. Destructive and non-destructive testing methods for characterization and detection of machining-induced white layer: A review paper. CIRP J. Manuf. Sci. Technol. 2018, 23, 39–53. [Google Scholar] [CrossRef]
- Rivard, P.; Saint-Pierre, F. Assessing alkali-silica reaction damage to concrete with non-destructive methods: From the lab to the field. Constr. Build. Mater. 2009, 23, 902–909. [Google Scholar] [CrossRef]
- Sanjay, R.; Tejeshwini, S.; Mamatha, K.H.; Dinesh, S.V. Comparative study on structural evaluation of flexible pavement using BBD and FWD. Mater. Today Proc. 2022, 60, 608–615. [Google Scholar] [CrossRef]
- Epps, J.A.; Monismith, C.J. Equipment for Obtaining Pavement Condition and Traffic Loading Data; National Cooperative Highway Research Program: Washington, DC, USA, 1986; pp. 10–11. [Google Scholar]
- Jean, R.; Thomas, A.; Hervé, D.B.; Cédric, S.; Michaël, B. Influence of interface properties on heavy weight deflectometer test results. Road Mater. Pavement Des. 2022, 23 (Suppl. S1), 162–177. [Google Scholar]
- Shrestha, S. Development of Structural Condition Thresholds for TSD Measurements. Ph.D. Thesis, Virginia Tech, Blacksburg, VA, USA, 2017. [Google Scholar]
- Broutin, M. Assessment of Flexible Airfield Pavements Using Heavy Weight Deflectometers. Development of a FEM Dynamical Time-Domain Analysis for the Backcalculation of Structural Properties. Ph.D. Thesis, Ecole des Ponts ParisTech, Paris, France, 2010. [Google Scholar]
- Pigozzi, F.; Coni, M.; Portas, S.; Maltinti, F. Implementation of deflection bowl measurements for structural evaluations at network level of airport pavement management system. In Proceedings of the FAA—Worldwide Airport Technology Transfer Conference—Innovations in Airport Safety and Pavement Technology, Galloway, NJ, USA, 5–7 August 2014; pp. 5–7. [Google Scholar]
- Zhang, J.; Lv, Q.; Shi, W.; Li, G.; Zhang, J. Refinement of a deflection basin area index method for rigid pavement. Shock Vib. 2021, 2021, 8684596. [Google Scholar] [CrossRef]
- Katicha, S.; Flintsch, G.; Diefenderfer, B. Ten years of traffic speed deflectometer research in the United States: A review. Transp. Res. Rec. 2022, 2676, 152–165. [Google Scholar] [CrossRef]
- Da Paiva, C.E.L.; Da Franco Peixoto, C.; Da Melo Correia, L.F.; Aguiar, P.R. Evaluation between two Brazilian railway tracks. J. Civ. Eng. Archit. 2011, 5. [Google Scholar] [CrossRef]
- Fontul, S.; Neves, J.; Gomes, S.V. Monitoring of Pavement Structural Characteristics. In Advances on Testing and Experimentation in Civil Engineering: Geotechnics, Transportation, Hydraulics and Natural Resources; Springer International Publishing: Cham, Switzerland, 2022. [Google Scholar]
- Zofka, A.; Sudyka, J.; Sybilski, D. Assessment of pavement structures at traffic speed. In Bearing Capacity of Roads, Railways and Airfields; CRC Press: Boca Raton, FL, USA, 2017; pp. 585–588. [Google Scholar]
- Wijesundara, M.; Azevedo, R. Silicon Carbide Microsystems for Harsh Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; p. 22. [Google Scholar]
- Zhao, H.; Wu, C.; Wang, X.; Zheng, Y. Pavement condition monitoring system at shanghai pudong international airport. In Pavement Materials, Structures, and Performance; ASCE Library: Reston, VA, USA, 2014; pp. 283–295. [Google Scholar]
- Alghadeir, A.; Sakran, H.A. Smart airport architecture using internet of things. Int. J. Innov. Res. Comput. Sci. Technol. 2016, 4, 2347–5552. [Google Scholar]
- Lee, X.; Hovan, M.; King, R. Runway instrumentation at Denver International Airport development of database. In Proceedings of the Aircraft/Pavement Technology in the Midst of Change ASCE, Air Transport Division, Airfield Pavement Committee American Society of Civil Engineers, Seattle, DC, USA, 17–20 August 1997. [Google Scholar]
- Dong, M.; Hayhoe, G.F.; Fang, Y.W. Runway instrumentation at Denver International Airport: Dynamic sensor data processing. In Proceedings of the Aircraft/Pavement Technology in the Midst of Change ASCE, Air Transport Division, Airfield Pavement Committee American Society of Civil Engineers, Seattle, DC, USA, 17–20 August 1997. [Google Scholar]
- Dong, M.; Hayhoe, G.F. Denver International Airport Sensor Processing and Database; Federal Aviation Administration, Office of Aviation Research: Washington, DC, USA, 2000.
- Brill, D.R.; Flynn, R.M.; Pecht, F. FAA Rigid Pavement Instrumentation at Atlanta Hartsfield-Jackson International Airport. In Proceedings of the 2007 Worldwide Airport Technology Transfer Conference Federal Aviation Administration American Association of Airport Executives, Atlantic City, NJ, USA, 16–18 April 2007. [Google Scholar]
- Cook, K. Detecting interlayer delamination in asphalt airport pavements using strain gage instrumentation systems. Ph.D. Thesis, University of Hawaii, Manoa, Honolulu, 2014. [Google Scholar]
- Cook, K.; Garg, N.; Singh, A. Detection of delamination in the HMA layer of runway pavement structure using asphalt strain gauges. J. Transp. Eng. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Xie, J.; Li, H.; Gao, L.; Liu, M. Laboratory investigation of rutting performance for multilayer pavement with fiber Bragg gratings. Constr. Build. Mater. 2017, 154, 331–339. [Google Scholar] [CrossRef]
- Doyle, J.D.; Cox, B.C.; Tingle, J.S.; Hodo, W.D.; Carr, H.T.; Donovan, P.R. Construction of Instrumented “Smart” Runway. In Airfield and Highway Pavements; ASCE Library: Reston, VA, USA, 2021; pp. 120–132. [Google Scholar]
- Ling, J.; Fang, Y.; Zhang, J.; Wu, Z.; Zhao, H.; Shen, R. Framework and key technologies of airport smart runway. China Civ. Eng. J. 2022, 55, 120–128. [Google Scholar]
- Rostworowski, A. Developing the intelligent airport. J. Airpt. Manag. 2012, 6, 202–206. [Google Scholar]
- Datla, R.; Chalavadi, V.; Mohan, C.K. A multimodal semantic segmentation for airport runway delineation in panchromatic remote sensing images. In Proceedings of the 14th International Conference on Machine Vision (ICMV 2021), Rome, Italy, 8–12 November 2021. [Google Scholar]
- Castellini, P.; Martarelli, M.; Tomasini, E.P. Laser Doppler Vibrometry: Development of advanced solutions answering to technology’s needs. Mech. Syst. Signal Process. 2006, 20, 1265–1285. [Google Scholar] [CrossRef]
- Ma, G.; Sawada, K.; Saito, H.; Uehan, F.; Yashima, A. Study on evaluating rock block stability by using a remotely positioned laser Doppler vibrometer. GEOMATE J. 2012, 2, 247–252. [Google Scholar] [CrossRef]
- Sugimoto, T.; Sugimoto, K.; Kosuge, N. High-speed noncontact acoustic inspection method for civil engineering structure using multitone burst wave. Jpn. J. Appl. Phys. 2017, 56, 07JC10. [Google Scholar] [CrossRef]
- Klun, M.; Zupan, D.; Lopatič, J. On the application of laser vibrometry to perform structural health monitoring in non-stationary conditions of a hydropower dam. Sensors 2019, 19, 3811. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhu, J.; Dai, J. Research on blade modal testing method based on 3D scanning laser Doppler vibration measurement technology. In Proceedings of the 2nd International Conference on Electronic Science and Automation Control, Suzhou, China, 16–17 May 2020. [Google Scholar]
- Tomasini, E.P.; Castellini, P. Laser Doppler Vibrometry; Springer: Berlin/Heidelberg, Germany, 2020; p. 7. [Google Scholar]
- Wu, T.; Liang, T.; Shuai, S. Accurate structural displacement monitoring by data fusion of a consumer-grade camera and accelerometers. Eng. Struct. 2022, 262, 114303. [Google Scholar] [CrossRef]
- Zak, J.; Korzynska, A.; Pater, A. Fourier Transform Layer: A proof of work in different training scenarios. Appl. Soft Comput. 2023, 145, 110607. [Google Scholar] [CrossRef]
- Yao, S.; Collins, T.; Jančovič, P. Hybrid method for designing digital Butterworth filters. Comput. Electr. Eng. 2012, 38, 811–818. [Google Scholar] [CrossRef]
- Pradeep, K.C.; Vipin, G.; Ram, B.P. Fourier-Bessel representation for signal processing: A review. Digit. Signal Process. 2023, 135, 103938. [Google Scholar]
- Alberto, C.; Giovanni, L.S. A study about Chebyshev nonlinear filters. Signal Process. 2016, 122, 24–32. [Google Scholar]
Conditions(m) | Preliminary Results (mm/s) | Processing Results (mm/s) | Error (%) |
---|---|---|---|
15 | 2.57 | 38.45 | 3.88 |
25 | 1.57 | 39.20 | 2.00 |
35 | 1.08 | 37.95 | 5.13 |
35 (reflector) | 39.97 | - | 0.08 |
Loads(kN) | Experimental Group (µm) | Control Group (µm) | Error (%) |
---|---|---|---|
80 | 88.42 | 91.39 | 3.25 |
100 | 95.47 | 101.88 | 6.29 |
120 | 108.89 | 112.66 | 3.35 |
140 | 111.49 | 119.21 | 6.48 |
160 | 120.86 | 125.53 | 3.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhao, X.; Tian, Y.; Li, L. Runway Pavement Structural Analysis Using Remote Laser Doppler Vibrometers. Appl. Sci. 2023, 13, 10539. https://doi.org/10.3390/app131810539
Yang G, Zhao X, Tian Y, Li L. Runway Pavement Structural Analysis Using Remote Laser Doppler Vibrometers. Applied Sciences. 2023; 13(18):10539. https://doi.org/10.3390/app131810539
Chicago/Turabian StyleYang, Ge, Xindong Zhao, Yu Tian, and Lingjie Li. 2023. "Runway Pavement Structural Analysis Using Remote Laser Doppler Vibrometers" Applied Sciences 13, no. 18: 10539. https://doi.org/10.3390/app131810539
APA StyleYang, G., Zhao, X., Tian, Y., & Li, L. (2023). Runway Pavement Structural Analysis Using Remote Laser Doppler Vibrometers. Applied Sciences, 13(18), 10539. https://doi.org/10.3390/app131810539