Marginal Fit Evaluation of Zirconia Substructure Computer-Aided Design and Manufacturing (CAD/CAM) by Scanning Electron Microscope
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cementation Protocol
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The MD and AMD values before cementation were smaller than after cementation.
- The mean MD and AMD values obtained were clinically acceptable.
- The CAD/CAM system is an advanced three-dimensional technology which reduces manual intervention and leads to more accurate manufacturing and fitting restoration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Quran, F.A.; Al-Ghalayini, R.F.; Al-Zu’bi, B.N. Single-tooth replacement: Factors affecting different prosthetic treatment modalities. BMC Oral Health 2011, 11, 34. [Google Scholar] [CrossRef]
- Pasali, B.; Sarac, D.; Kaleli, N.; Sarac, Y.S. Evaluation of marginal fit of single implant-supported metal-ceramic crowns prepared by using presintered metal blocks. J. Prosthet. Dent. 2018, 119, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Holmes, J.R.; Bayne, S.C.; Holland, G.A.; Sulik, W.D. Considerations in measurement of marginal fit. J. Prosthet. Dent. 1989, 62, 405–408. [Google Scholar] [CrossRef] [PubMed]
- Meirowitz, A.; Bitterman, Y.; Levy, S.; Mijiritsky, E.; Dolev, E. An in vitro evaluation of marginal fit zirconia crowns fabricated by a CAD-CAM dental laboratory and a milling center. BMC Oral Health 2019, 19, 103. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Huang, X.; Zhou, X.; Li, M.; Ren, B.; Peng, X.; Cheng, L. Influence of dental prosthesis and restorative materials interface on oral biofilms. Int. J. Mol. Sci. 2018, 19, 3157. [Google Scholar] [CrossRef]
- Koutouzis, T.; Wallet, S.; Calderon, N.; Lundgren, T. Bacterial colonization of the implant-abutment interface using an in vitro dynamic loading model. J. Periodontol. 2011, 82, 613–618. [Google Scholar] [CrossRef]
- Akbar, J.H.; Petrie, C.S.; Walker, M.P.; Williams, K.; Eick, J.D. Marginal adaptation of Cerec 3 CAD/CAM composite crowns using two different finish line preparation designs. J. Prosthodont. 2006, 15, 155–163. [Google Scholar] [CrossRef]
- Att, W.; Komine, F.; Gerds, T.; Strub, J.R. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J. Prosthet. Dent. 2009, 101, 239–247. [Google Scholar] [CrossRef]
- Ural, C.; Burgaz, Y.; Saraç, D. In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques. Quintessence Int. 2010, 41, 585–590. [Google Scholar]
- Baig, M.R.; Tan, K.B.; Nicholls, J.I. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. J. Prosthet. Dent. 2010, 104, 216–227. [Google Scholar] [CrossRef]
- Mello, C.C.; Lemos, C.A.A.; de Luna Gomes, J.M.; Verri, F.R.; Pellizzer, E.P. CAD/CAM vs conventional technique for fabrication of implant-supported frameworks: A systematic review and meta-analysis of in vitro studies. Int. J. Prosthodont. 2019, 32, 182–192. [Google Scholar] [CrossRef]
- Bayramoğlu, E.; Özkan, Y.K.; Yildiz, C. Comparison of marginal and internal fit of press-on-metal and conventional ceramic systems for three- and four-unit implant-supported partial fixed dental prostheses: An in vitro study. J. Prosthet. Dent. 2015, 114, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, H.H.; Younis, J.F. Marginal fit of implant-supported all-ceramic zirconia frameworks. J. Oral Implantol. 2013, 39, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Kapos, T.; Evans, C. CAD/CAM technology for implant abutments, crowns, and superstructures. Int. J. Oral Maxillofac. Implants 2014, 29, 117–136. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Sordi, M.B.; Magini, R.S.; Calazans Duarte, A.R.; Souza, J.C.M. Abutment misfit in implant-supported prostheses manufactured by casting technique: An integrative review. Eur. J. Dent. 2017, 11, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to Zirconia: A Systematic Review of Current Conditioning Methods and Bonding Materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Al-Thobity, A.M. Titanium Base Abutments in Implant Prosthodontics: A Literature Review. Eur. J. Dent. 2022, 16, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Rus, F.; Ferreiroa, A.; Ozcan, M.; Pradies, G. Marginal discrepancy of monolithic and veneered all-ceramic crowns on titanium and zirconia implant abutments before and after adhesive cementation: A scanning electron microscopy analysis. Int. J. Oral Maxillofac. Implants 2013, 28, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.A.; Mack, F.; Evans, J.; Mackay, J.; Hatamleh, M.M. Accuracy and reliability of methods to measure marginal adaptation of crowns and FDPs: A literature review. J. Prosthodont. 2013, 22, 419–428. [Google Scholar] [CrossRef]
- Okutan, M.; Heydecke, G.; Butz, F.; Strub, J.R. Fracture load and marginal fit of shrinkage-free ZrSiO4 all-ceramic crowns after chewing simulation. J. Oral Rehabil. 2006, 33, 827–832. [Google Scholar] [CrossRef]
- Borges, G.A.; Faria, J.S.; Agarwal, P.; Spohr, A.M.; Correr-Sobrinho, L.; Miranzi, B.A. In vitro marginal fit of three all-ceramic crown systems before and after cementation. Oper. Dent. 2012, 37, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Valente, V.S.; Francischone, C.E.; Júnior, F.C.; Silva, A.M.; Ribeiro, I.S.; Bandéca, M.C.; Tonetto, M.R.; de Jesus Tavarez, R.R. Marginal Fit Metal-Ceramic and In-Ceram Single Crown Cement retained in Implant-supported Abutments. J. Contemp. Dent. Pract. 2016, 17, 969–972. [Google Scholar] [PubMed]
- Boeckler, A.F.; Morton, D.; Kraemer, S.; Geiss-Gerstdorfer, J.; Setz, J.M. Marginal accuracy of combined tooth-implant-supported fixed dental prostheses after in vitro stress simulation. Clin. Oral Implants Res. 2008, 19, 1261–1269. [Google Scholar] [CrossRef]
- McLean, J.W.; von Fraunhofer, J.A. The estimation of cement film thickness by an in vivo technique. Br. Dent. J. 1971, 131, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yuan, F.; Luo, X.; Yu, Z.; Tang, Z. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques. J. Prosthet. Dent. 2018, 120, 525–529. [Google Scholar] [CrossRef]
- Martínez-Rus, F.; Suárez, M.J.; Rivera, B.; Pradíes, G. Evaluation of the absolute marginal discrepancy of zirconia-based ceramic copings. J. Prosthet. Dent. 2011, 105, 108–114. [Google Scholar] [CrossRef]
- Prasad, R.; Al-Kheraif, A.A. Three-dimensional accuracy of CAD/CAM titanium and ceramic superstructures for implant abutments using spiral scan microtomography. Int. J. Prosthodont. 2013, 26, 451–457. [Google Scholar] [CrossRef]
- Guncu, M.B.; Aktas, G.; Guncu, G.N.; Anıl, D.; Turkyilmaz, I.; Antonoff, L.R. Clinical, technical, and radiologic outcomes of 182 implant-supported zirconia single crowns using titanium-base abutments: A retrospective study. Int. J. Prosthodont. 2022, 35, 553–559. [Google Scholar] [CrossRef]
- Pamato, S.; Honório, H.M.; da Costa, J.A.; Traebert, J.L.; Bonfante, E.A.; Pereira, J.R. The influence of titanium base abutments on peri-implant soft tissue inflammatory parameters and marginal bone loss: A randomized clinical trial. Clin. Implant. Dent. Relat. Res. 2020, 22, 542–548. [Google Scholar] [CrossRef]
- Pitta, J.; Hicklin, S.P.; Fehmer, V.; Boldt, J.; Gierthmuehlen, P.C.; Sailer, I. Mechanical stability of zirconia meso-abutments bonded to titanium bases restored with different monolithic all-ceramic crowns. Int. J. Oral Maxillofac. Implants 2019, 34, 1091–1097. [Google Scholar] [CrossRef]
- Rathe, F.; Junker, R.; Heumann, C.; Blumenröhr, J.; Auschill, T.; Arweiler, N.; Schlee, M. Long-term effects of titanium-base abutments on peri-implant health: A 5-year randomised controlled trial. Int. J. Oral Implantol. 2022, 15, 167–179. [Google Scholar]
- Afrashtehfar, K.I.; Weber, A.; Abou-Ayash, S. Titanium-base abutments may have similar long-term peri-implant effects as non-bonded one-piece abutments. Evid. Based Dent. 2022, 23, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, E.; Suárez, M.J.; Serrano, B.; Lozano, J.F. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J. Prosthet. Dent. 2009, 102, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Alghazzawi, T.F. Advancements in CAD/CAM technology: Options for practical implementation. J. Prosthodont. Res. 2016, 60, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, H.; Fellows, C.; An, H. Digital Technologies for Restorative Dentistry. Dent. Clin. N. Am. 2022, 66, 567–590. [Google Scholar] [CrossRef] [PubMed]
- El-Dessouky, R.; Salama, M.M.; Shakal, M.A.; Korsel, A.M. Marginal adaptation of CAD/CAM zirconia-based crown during fabrication steps. Tanta Dental J. 2015, 12, 81–88. [Google Scholar] [CrossRef]
- Moreno, A.L.M.; Dos Santos, D.M.; Bertoz, A.P.M.; Goiato, M.C. Abutment on Titanium-Base Hybrid Implant: A Literature Review. Eur. J. Dent. 2023, 17, 261–269. [Google Scholar] [CrossRef]
- Weaver, J.D.; Johnson, G.H.; Bales, D.J. Marginal adaptation of castable ceramic crowns. J. Prosthet. Dent. 1991, 66, 747–753. [Google Scholar] [CrossRef]
Parameter | N | Minimum | Maximum | Mean | SD |
---|---|---|---|---|---|
MD before cementation | 25 | 5.29 | 28.37 | 14.12 | 6.26 |
MD after cementation | 25 | 8.56 | 71.28 | 20.28 | 13.56 |
AMD before cementation | 25 | 17.88 | 192.66 | 54.85 | 35.85 |
AMD after cementation | 25 | 32.80 | 361.56 | 116 | 77.07 |
Average AMD before cementation | 25 | 17.82 | 180.40 | 61.02 | 36.73 |
Average AMD after cementation | 25 | 34.18 | 362.18 | 123.35 | 75.79 |
Parameter | Mean | SD | N |
---|---|---|---|
MD before cementation aspect 1 | 13.84 | 7.65 | 25 |
MD before cementation aspect 2 | 12.59 | 7.39 | 25 |
MD before cementation aspect 3 | 15.93 | 8.47 | 25 |
MD after cementation aspect 1 | 21.34 | 19.6 | 25 |
MD after cementation aspect 2 | 19.97 | 17.52 | 25 |
MD after cementation aspect 3 | 19.53 | 7.58 | 25 |
Parameter | Mean | SD | N |
---|---|---|---|
AMD before cementation aspect 1 | 72.03 | 98.50 | 25 |
AMD before cementation aspect 2 | 47.06 | 35.84 | 25 |
AMD before cementation aspect 3 | 45.45 | 27.88 | 25 |
AMD after cementation aspect 1 | 157.15 | 211.84 | 25 |
AMD after cementation aspect 2 | 112.22 | 92.35 | 25 |
AMD after cementation aspect 3 | 78.48 | 59.65 | 25 |
Parameter | Mean | SD | N |
---|---|---|---|
Average AMD before cementation aspect 1 | 72.34 | 90.08 | 25 |
Average AMD before cementation aspect 2 | 50.87 | 44.59 | 25 |
Average AMD before cementation aspect 3 | 59.84 | 47.63 | 25 |
Average AMD after cementation aspect 1 | 153.30 | 194.11 | 25 |
Average AMD after cementation aspect 2 | 124.57 | 97.32 | 25 |
Average AMD after cementation aspect 3 | 92.17 | 66.22 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Ras, K.; Dolev, E.; Biadsee, A.; Ormianer, Z. Marginal Fit Evaluation of Zirconia Substructure Computer-Aided Design and Manufacturing (CAD/CAM) by Scanning Electron Microscope. Appl. Sci. 2023, 13, 10984. https://doi.org/10.3390/app131910984
Abu-Ras K, Dolev E, Biadsee A, Ormianer Z. Marginal Fit Evaluation of Zirconia Substructure Computer-Aided Design and Manufacturing (CAD/CAM) by Scanning Electron Microscope. Applied Sciences. 2023; 13(19):10984. https://doi.org/10.3390/app131910984
Chicago/Turabian StyleAbu-Ras, Kian, Eran Dolev, Ameer Biadsee, and Zeev Ormianer. 2023. "Marginal Fit Evaluation of Zirconia Substructure Computer-Aided Design and Manufacturing (CAD/CAM) by Scanning Electron Microscope" Applied Sciences 13, no. 19: 10984. https://doi.org/10.3390/app131910984
APA StyleAbu-Ras, K., Dolev, E., Biadsee, A., & Ormianer, Z. (2023). Marginal Fit Evaluation of Zirconia Substructure Computer-Aided Design and Manufacturing (CAD/CAM) by Scanning Electron Microscope. Applied Sciences, 13(19), 10984. https://doi.org/10.3390/app131910984